skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computing Equilibria in Binary Networked Public Goods Games
Public goods games study the incentives of individuals to contribute to a public good and their behaviors in equilibria. In this paper, we examine a specific type of public goods game where players are networked and each has binary actions, and focus on the algorithmic aspects of such games. First, we show that checking the existence of a pure-strategy Nash equilibrium is NP-Complete. We then identify tractable instances based on restrictions of either utility functions or of the underlying graphical structure. In certain cases, we also show that we can efficiently compute a socially optimal Nash equilibrium. Finally, we propose a heuristic approach for computing approximate equilibria in general binary networked public goods games, and experimentally demonstrate its effectiveness.  more » « less
Award ID(s):
1903207
PAR ID:
10174302
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A public decision-making problem consists of a set of issues, each with multiple possible alternatives, and a set of competing agents, each with a preferred alternative for each issue. We study adaptations of market economies to this setting, focusing on binary issues. Issues have prices, and each agent is endowed with artificial currency that she can use to purchase probability for her preferred alternatives (we allow randomized outcomes). We first show that when each issue has a single price that is common to all agents, market equilibria can be arbitrarily bad. This negative result motivates a different approach. We present a novel technique called "pairwise issue expansion", which transforms any public decision-making instance into an equivalent Fisher market, the simplest type of private goods market. This is done by expanding each issue into many goods: one for each pair of agents who disagree on that issue. We show that the equilibrium prices in the constructed Fisher market yield a "pairwise pricing equilibrium" in the original public decision-making problem which maximizes Nash welfare. More broadly, pairwise issue expansion uncovers a powerful connection between the public decision-making and private goods settings; this immediately yields several interesting results about public decisions markets, and furthers the hope that we will be able to find a simple iterative voting protocol that leads to near-optimum decisions. 
    more » « less
  2. Guruswami, Venkatesan (Ed.)
    A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability: approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called σ-smooth Nash equilibrium, for a {smoothness parameter} σ. In a σ-smooth Nash equilibrium, players only need to achieve utility at least as high as their best deviation to a σ-smooth strategy, which is a distribution that does not put too much mass (as parametrized by σ) on any fixed action. We distinguish two variants of σ-smooth Nash equilibria: strong σ-smooth Nash equilibria, in which players are required to play σ-smooth strategies under equilibrium play, and weak σ-smooth Nash equilibria, where there is no such requirement. We show that both weak and strong σ-smooth Nash equilibria have superior computational properties to Nash equilibria: when σ as well as an approximation parameter ϵ and the number of players are all constants, there is a {constant-time} randomized algorithm to find a weak ϵ-approximate σ-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a polynomial-time deterministic algorithm to find a strong ϵ-approximate σ-smooth Nash equilibrium in a normal-form game. These results stand in contrast to the optimal algorithm for computing ϵ-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time, subject to complexity-theoretic assumptions. We complement our upper bounds by showing that when either σ or ϵ is an inverse polynomial, finding a weak ϵ-approximate σ-smooth Nash equilibria becomes computationally intractable. Our results are the first to propose a variant of Nash equilibrium which is computationally tractable, allows players to act independently, and which, as we discuss, is justified by an extensive line of work on individual choice behavior in the economics literature. 
    more » « less
  3. In 1950, Nash proposed a natural equilibrium solution concept for games hence called Nash equilibrium, and proved that all finite games have at least one. The proof is through a simple yet ingenious application of Brouwer’s (or, in another version Kakutani’s) fixed point theorem, the most sophisticated result in his era’s topology—in fact, recent algorithmic work has established that Nash equilibria are computationally equivalent to fixed points. In this paper, we propose a new class of universal non-equilibrium solution concepts arising from an important theorem in the topology of dynamical systems that was unavailable to Nash. This approach starts with both a game and a learning dynamics, defined over mixed strategies. The Nash equilibria are fixpoints of the dynamics, but the system behavior is captured by an object far more general than the Nash equilibrium that is known in dynamical systems theory as chain recurrent set. Informally, once we focus on this solution concept—this notion of “the outcome of the game”—every game behaves like a potential game with the dynamics converging to these states. In other words, unlike Nash equilibria, this solution concept is algorithmic in the sense that it has a constructive proof of existence. We characterize this solution for simple benchmark games under replicator dynamics, arguably the best known evolutionary dynamics in game theory. For (weighted) potential games, the new concept coincides with the fixpoints/equilibria of the dynamics. However, in (variants of) zero-sum games with fully mixed (i.e., interior) Nash equilibria, it covers the whole state space, as the dynamics satisfy specific information theoretic constants of motion. We discuss numerous novel computational, as well as structural, combinatorial questions raised by this chain recurrence conception of games. 
    more » « less
  4. null (Ed.)
    This paper considers network protection games against different types of attackers for a heterogeneous network system with N units. A defender, by applying resources to networked units, can decrease the units’ vulnerabilities. At the same time, the defender needs to take into account the cost of using defense resources. Two non-zero sum Nash games against two different types of attackers are studied. The first type tries to maximize damage based on the value of security assets related to networked units, while the second type aims at infiltrating the network. The analyses show that there exists a cut-off index determining the set of units that will be protected in the equilibrium strategies of the first game, while either all units or none will be covered in the equilibria of the second game. An application of the network protection game to secure wireless communication networks is presented. 
    more » « less
  5. The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $$\epsilon$$-Nash Markov equilibria for $$N$$ players with $$\epsilon$$ converging to zero as $$N$$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $$N$$ as $$N$$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping. 
    more » « less