The nonlocal three-flavor Nambu-Jona-Lasinio model is used to study quark deconfinement in the cores of neutron stars (NSs). The quark-hadron phase transition is modeled using both the Maxwell construction and the Gibbs construction. For the Maxwell construction, we find that all NSs with core densities beyond the phase transition density are unstable. Therefore, no quark matter cores would exist inside such NSs. The situation is drastically different if the phase transition is treated as a Gibbs transition, resulting in stable NSs whose stellar cores are a mixture of hadronic matter and deconfined quarks. The largest fractions of quarks achieved in the quark-hadron mixed phase are around 50%. No choice of parametrization or composition leads to a pure quark matter core. The inclusion of repulsive vector interactions among the quarks is crucial since the equation of state (EoS) in the quark-hadron mixed phase is significantly softer than that of the pure hadronic phase. 
                        more » 
                        « less   
                    
                            
                            Phases of Hadron-Quark Matter in (Proto) Neutron Stars
                        
                    
    
            In the first part of this paper, we investigate the possible existence of a structured hadron-quark mixed phase in the cores of neutron stars. This phase, referred to as the hadron-quark pasta phase, consists of spherical blob, rod, and slab rare phase geometries. Particular emphasis is given to modeling the size of this phase in rotating neutron stars. We use the relativistic mean-field theory to model hadronic matter and the non-local three-flavor Nambu–Jona-Lasinio model to describe quark matter. Based on these models, the hadron-quark pasta phase exists only in very massive neutron stars, whose rotational frequencies are less than around 300 Hz. All other stars are not dense enough to trigger quark deconfinement in their cores. Part two of the paper deals with the quark-hadron composition of hot (proto) neutron star matter. To this end we use a local three-flavor Polyakov–Nambu–Jona-Lasinio model which includes the ’t Hooft (quark flavor mixing) term. It is found that this term leads to non-negligible changes in the particle composition of (proto) neutron stars made of hadron-quark matter. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1714068
- PAR ID:
- 10174320
- Date Published:
- Journal Name:
- Universe
- Volume:
- 5
- Issue:
- 7
- ISSN:
- 2218-1997
- Page Range / eLocation ID:
- 169
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study the effect of strong magnetic field on competing chiral and diquark order parameters in a regime of moderately dense quark matter. The interdependence of the chiral and diquark condensates through nonperturbative quark mass and strong coupling effects is analyzed in a two-flavor Nambu-Jona-Lasinio (NJL) model. In the weak magnetic field limit, our results agree qualitatively with earlier zero-field studies in the literature that find a critical coupling ratio G D / G S ~ 1.1 below which chiral or superconducting order parameters appear almost exclusively. Above the critical ratio, there exists a significant mixed broken phase region where both gaps are nonzero. However, a strong magnetic field B ≳ 1 0 18 G disrupts this mixed broken phase region and changes a smooth crossover found in the weak-field case to a first-order transition for both gaps at almost the same critical density. Our results suggest that in the two-flavor approximation to moderately dense quark matter strong magnetic field enhances the possibility of a mixed phase at high density, with implications for the structure, energetics, and vibrational spectrum of neutron stars.more » « less
- 
            We present a much improved equation of state for neutron star matter, QHC19, with a smooth crossover from the hadronic regime at lower densities to the quark regime at higher densities. We now use the Togashi et al.equation of state, a generalization of the Akmal–Pandharipande–Ravenhall equation of state of uniform nuclear matter, in the entire hadronic regime; the Togashi equation of state consistently describes nonuniform as well as uniform matter, and matter at beta equilibrium without the need for an interpolation between pure neutron and symmetric nuclear matter. We describe the quark matter regime at higher densities with the Nambu–Jona–Lasinio model, now identifying tight constraints on the phenomenological universal vector repulsion between quarks and the pairing interaction between quarks arising from the requirements of thermodynamic stability and causal propagation of sound. The resultant neutron star properties agree very well with the inferences of the LIGO/Virgo collaboration, from GW170817, of the pressure versus baryon density, neutron star radii, and tidal deformabilities. The maximum neutron star mass allowed by QHC19 is 2.35 solar masses, consistent with all neutron star mass determinations.more » « less
- 
            We investigate the influence of repulsive vector interactions and color superconductivity on the structure of neutron stars using an extended version of the field correlator method (FCM) for the description of quark matter. The hybrid equation of state is constructed using the Maxwell description, which assumes a sharp hadron-quark phase transition. The equation of state of hadronic matter is computed for a density-dependent relativistic lagrangian treated in the mean-field approximation, with parameters given by the SW4L nuclear model. This model described the interactions among baryons in terms of σ, ω, ρ, σ*, and ϕ mesons. Quark matter is assumed to be in either the CFL or the 2SC+s color superconducting phase. The possibility of sequential (hadron-quark, quark-quark) transitions in ultra-dense matter is investigated. Observed data related to massive pulsars, gravitational-wave events, and NICER are used to constrain the parameters of the extended FCM model. The successful equations of state are used to explore the mass-radius relationship, radii, and tidal deformabilities of hybrid stars. A special focus lies on investigating consequences that slow or fast conversions of quark-hadron matter have on the stability and the mass-radius relationship of hybrid stars. We find that if slow conversion should occur, a new branch of stable massive stars would exist whose members have radii that are up to 1.5 km smaller than those of conventional neutron stars of the same mass. Such objects could be possible candidates for the stellar high-mass object of the GW190425 binary system.more » « less
- 
            null (Ed.)We study the principal core g-mode oscillation in hybrid stars containing quark matter and find that they have an unusually large frequency range (≈200–600 Hz) compared to ordinary neutron stars or self-bound quark stars of the same mass. Theoretical arguments and numerical calculations that trace this effect to the difference in the behavior of the equilibrium and adiabatic sound speeds in the mixed phase of quarks and nucleons are provided. We propose that the sensitivity of core g-mode oscillations to non-nucleonic matter in neutron stars could be due to the presence of a mixed quark-nucleon phase. Based on our analysis, we conclude that for binary mergers where one or both components may be a hybrid star, the fraction of tidal energy pumped into resonant g-modes in hybrid stars can exceed that of a normal neutron star by a factor of 2 to 3, although resonance occurs during the last stages of inspiral. A self-bound star, on the other hand, has a much weaker tidal overlap with the g-mode. The cumulative tidal phase error in hybrid stars, Δφ ≅ 0.5 rad, is comparable to that from tides in ordinary neutron stars, presenting a challenge in distinguishing between the two cases. However, should the principal g-mode be excited to sufficient amplitude for detection in a postmerger remnant with quark matter in its interior, its frequency would be a possible indication for the existence of non-nucleonic matter in neutron stars.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    