In the first part of this paper, we investigate the possible existence of a structured hadron-quark mixed phase in the cores of neutron stars. This phase, referred to as the hadron-quark pasta phase, consists of spherical blob, rod, and slab rare phase geometries. Particular emphasis is given to modeling the size of this phase in rotating neutron stars. We use the relativistic mean-field theory to model hadronic matter and the non-local three-flavor Nambu–Jona-Lasinio model to describe quark matter. Based on these models, the hadron-quark pasta phase exists only in very massive neutron stars, whose rotational frequencies are less than around 300 Hz. All other stars are not dense enough to trigger quark deconfinement in their cores. Part two of the paper deals with the quark-hadron composition of hot (proto) neutron star matter. To this end we use a local three-flavor Polyakov–Nambu–Jona-Lasinio model which includes the ’t Hooft (quark flavor mixing) term. It is found that this term leads to non-negligible changes in the particle composition of (proto) neutron stars made of hadron-quark matter. 
                        more » 
                        « less   
                    
                            
                            g-mode oscillations in hybrid stars: A tale of two sounds
                        
                    
    
            We study the principal core g-mode oscillation in hybrid stars containing quark matter and find that they have an unusually large frequency range (≈200–600 Hz) compared to ordinary neutron stars or self-bound quark stars of the same mass. Theoretical arguments and numerical calculations that trace this effect to the difference in the behavior of the equilibrium and adiabatic sound speeds in the mixed phase of quarks and nucleons are provided. We propose that the sensitivity of core g-mode oscillations to non-nucleonic matter in neutron stars could be due to the presence of a mixed quark-nucleon phase. Based on our analysis, we conclude that for binary mergers where one or both components may be a hybrid star, the fraction of tidal energy pumped into resonant g-modes in hybrid stars can exceed that of a normal neutron star by a factor of 2 to 3, although resonance occurs during the last stages of inspiral. A self-bound star, on the other hand, has a much weaker tidal overlap with the g-mode. The cumulative tidal phase error in hybrid stars, Δφ ≅ 0.5 rad, is comparable to that from tides in ordinary neutron stars, presenting a challenge in distinguishing between the two cases. However, should the principal g-mode be excited to sufficient amplitude for detection in a postmerger remnant with quark matter in its interior, its frequency would be a possible indication for the existence of non-nucleonic matter in neutron stars. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1913693
- PAR ID:
- 10276439
- Date Published:
- Journal Name:
- Physical review
- Volume:
- 103
- ISSN:
- 2470-0010
- Page Range / eLocation ID:
- 123009
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study the non-radial oscillation modes of strange quark stars with a homogeneous core and a crust made of strangelets. Using a 2-component equation-of-state model (core+crust) for strange quark stars that can produce stars as heavy as 2 solar masses, we identify the high-frequency l=2 spheroidal (f, p) in Newtonian gravity, using the Cowling approximation. The results are compared to the case of homogeneous compact stars such as polytropic neutron stars, as well as bare strange stars. We find that the strangelet crust only increases very slightly the frequency of the spheroidal modes, and that Newtonian gravity overestimates the mode frequencies of the strange star, as is the case for neutron stars.more » « less
- 
            We investigate the influence of repulsive vector interactions and color superconductivity on the structure of neutron stars using an extended version of the field correlator method (FCM) for the description of quark matter. The hybrid equation of state is constructed using the Maxwell description, which assumes a sharp hadron-quark phase transition. The equation of state of hadronic matter is computed for a density-dependent relativistic lagrangian treated in the mean-field approximation, with parameters given by the SW4L nuclear model. This model described the interactions among baryons in terms of σ, ω, ρ, σ*, and ϕ mesons. Quark matter is assumed to be in either the CFL or the 2SC+s color superconducting phase. The possibility of sequential (hadron-quark, quark-quark) transitions in ultra-dense matter is investigated. Observed data related to massive pulsars, gravitational-wave events, and NICER are used to constrain the parameters of the extended FCM model. The successful equations of state are used to explore the mass-radius relationship, radii, and tidal deformabilities of hybrid stars. A special focus lies on investigating consequences that slow or fast conversions of quark-hadron matter have on the stability and the mass-radius relationship of hybrid stars. We find that if slow conversion should occur, a new branch of stable massive stars would exist whose members have radii that are up to 1.5 km smaller than those of conventional neutron stars of the same mass. Such objects could be possible candidates for the stellar high-mass object of the GW190425 binary system.more » « less
- 
            The nonlocal three-flavor Nambu-Jona-Lasinio model is used to study quark deconfinement in the cores of neutron stars (NSs). The quark-hadron phase transition is modeled using both the Maxwell construction and the Gibbs construction. For the Maxwell construction, we find that all NSs with core densities beyond the phase transition density are unstable. Therefore, no quark matter cores would exist inside such NSs. The situation is drastically different if the phase transition is treated as a Gibbs transition, resulting in stable NSs whose stellar cores are a mixture of hadronic matter and deconfined quarks. The largest fractions of quarks achieved in the quark-hadron mixed phase are around 50%. No choice of parametrization or composition leads to a pure quark matter core. The inclusion of repulsive vector interactions among the quarks is crucial since the equation of state (EoS) in the quark-hadron mixed phase is significantly softer than that of the pure hadronic phase.more » « less
- 
            We study the possible occurrence of the hadron-quark phase transition (PT) during the merging of neutron star binaries by hydrodynamical simulations employing a set of temperature dependent hybrid equations of state (EoSs). Following previous work we describe an unambiguous and measurable signature of deconfined quark matter in the gravitational-wave (GW) signal of neutron star binary mergers including equal-mass and unequal-mass systems of different total binary mass. The softening of the EoS by the PT at higher densities, i.e. after merging, leads to a characteristic increase of the dominant postmerger GW frequency f_peak relative to the tidal deformability Lambda inferred during the premerger inspiral phase. Hence, measuring such an increase of the postmerger frequency provides evidence for the presence of a strong PT. If the postmerger frequency and the tidal deformability are compatible with results from purely baryonic EoS models yielding very tight relations between f_peak and Lambda, a strong PT can be excluded up to a certain density. We find tight correlations of f_peak and Lambda with the maximum density during the early postmerger remnant evolution. These GW observables thus inform about the density regime which is probed by the remnant and its GW emission. Exploiting such relations we devise a directly applicable, concrete procedure to constrain the onset density of the QCD PT from future GW measurements. We point out two interesting scenarios: if no indications for a PT are inferred from a GW detection, our procedure yields a lower limit on the onset density of the hadron quark PT. On the contrary, if a merger event reveals evidence for the occurrence of deconfined quark matter, the inferred GW parameters set an upper limit on the PT onset density. (abridged)more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    