skip to main content


Title: ALERT: Accurate Learning for Energy and Timeliness
An increasing number of software applications incorporate runtime Deep Neural Networks (DNNs) to process sensor data and return inference results to humans. Effective deployment of DNNs in these interactive scenarios requires meeting latency and accuracy constraints while minimizing energy, a problem exacerbated by common system dynamics. %nature of computation resources and the accuracy, latency, or energy constraints. Prior approaches handle dynamics through either (1) system-oblivious DNN adaptation, which adjusts DNN latency/accuracy tradeoffs, or (2) application-oblivious system adaptation, which adjusts resources to change latency/energy tradeoffs. In contrast, this paper improves on the state-of-the-art by coordinating application- and system-level adaptation. ALERT, our runtime scheduler, uses a probabilistic model to detect environmental volatility and then simultaneously select both a DNN and a system resource configuration to meet latency, accuracy, and energy constraints. We evaluate ALERT on CPU and GPU platforms for image and speech tasks in dynamic environments. ALERT's holistic approach achieves more than 13% energy reduction, and 27% error reduction over prior approaches that adapt solely at the application or system level. Furthermore, ALERT incurs only 3% more energy consumption and 2% higher DNN-inference error than an oracle scheme with perfect application and system knowledge.  more » « less
Award ID(s):
1764039
NSF-PAR ID:
10174373
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 2020 USENIX Annual Technical Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Model-serving systems expose machine learning (ML) models to applications programmatically via a high-level API. Cloud plat- forms use these systems to mask the complexities of optimally managing resources and servicing inference requests across multi- ple applications. Model serving at the edge is now also becoming increasingly important to support inference workloads with tight latency requirements. However, edge model serving differs substan- tially from cloud model serving in its latency, energy, and accuracy constraints: these systems must support multiple applications with widely different latency and accuracy requirements on embedded edge accelerators with limited computational and energy resources. To address the problem, this paper presents Dělen,1 a flexible and adaptive model-serving system for multi-tenant edge AI. Dělen exposes a high-level API that enables individual edge applications to specify a bound at runtime on the latency, accuracy, or energy of their inference requests. We efficiently implement Dělen using conditional execution in multi-exit deep neural networks (DNNs), which enables granular control over inference requests, and evalu- ate it on a resource-constrained Jetson Nano edge accelerator. We evaluate Dělen flexibility by implementing state-of-the-art adapta- tion policies using Dělen’s API, and evaluate its adaptability under different workload dynamics and goals when running single and multiple applications. 
    more » « less
  2. Efficient and adaptive computer vision systems have been proposed to make computer vision tasks, such as image classification and object detection, optimized for embedded or mobile devices. These solutions, quite recent in their origin, focus on optimizing the model (a deep neural network, DNN) or the system by designing an adaptive system with approximation knobs. Despite several recent efforts, we show that existing solutions suffer from two major drawbacks. First , while mobile devices or systems-on-chips (SOCs) usually come with limited resources including battery power, most systems do not consider the energy consumption of the models during inference. Second , they do not consider the interplay between the three metrics of interest in their configurations, namely, latency, accuracy, and energy. In this work, we propose an efficient and adaptive video object detection system — Virtuoso , which is jointly optimized for accuracy, energy efficiency, and latency. Underlying Virtuoso is a multi-branch execution kernel that is capable of running at different operating points in the accuracy-energy-latency axes, and a lightweight runtime scheduler to select the best fit execution branch to satisfy the user requirement. We position this work as a first step in understanding the suitability of various object detection kernels on embedded boards in the accuracy-latency-energy axes, opening the door for further development in solutions customized to embedded systems and for benchmarking such solutions. Virtuoso is able to achieve up to 286 FPS on the NVIDIA Jetson AGX Xavier board, which is up to 45 times faster than the baseline EfficientDet D3 and 15 times faster than the baseline EfficientDet D0. In addition, we also observe up to 97.2% energy reduction using Virtuoso compared to the baseline YOLO (v3) — a widely used object detector designed for mobiles. To fairly compare with Virtuoso , we benchmark 15 state-of-the-art or widely used protocols, including Faster R-CNN (FRCNN) [NeurIPS’15], YOLO v3 [CVPR’16], SSD [ECCV’16], EfficientDet [CVPR’20], SELSA [ICCV’19], MEGA [CVPR’20], REPP [IROS’20], FastAdapt [EMDL’21], and our in-house adaptive variants of FRCNN+, YOLO+, SSD+, and EfficientDet+ (our variants have enhanced efficiency for mobiles). With this comprehensive benchmark, Virtuoso has shown superiority to all the above protocols, leading the accuracy frontier at every efficiency level on NVIDIA Jetson mobile GPUs. Specifically, Virtuoso has achieved an accuracy of 63.9%, which is more than 10% higher than some of the popular object detection models, FRCNN at 51.1%, and YOLO at 49.5%. 
    more » « less
  3. The record-breaking performance of deep neural networks (DNNs) comes with heavy parameter budgets, which leads to external dynamic random access memory (DRAM) for storage. The prohibitive energy of DRAM accesses makes it nontrivial for DNN deployment on resource-constrained devices, calling for minimizing the movements of weights and data in order to improve the energy efficiency. Driven by this critical bottleneck, we present SmartDeal, a hardware-friendly algorithm framework to trade higher-cost memory storage/access for lower-cost computation, in order to aggressively boost the storage and energy efficiency, for both DNN inference and training. The core technique of SmartDeal is a novel DNN weight matrix decomposition framework with respective structural constraints on each matrix factor, carefully crafted to unleash the hardware-aware efficiency potential. Specifically, we decompose each weight tensor as the product of a small basis matrix and a large structurally sparse coefficient matrix whose nonzero elements are readily quantized to the power-of-2. The resulting sparse and readily quantized DNNs enjoy greatly reduced energy consumption in data movement as well as weight storage, while incurring minimal overhead to recover the original weights thanks to the required sparse bit-operations and cost-favorable computations. Beyond inference, we take another leap to embrace energy-efficient training, by introducing several customized techniques to address the unique roadblocks arising in training while preserving the SmartDeal structures. We also design a dedicated hardware accelerator to fully utilize the new weight structure to improve the real energy efficiency and latency performance. We conduct experiments on both vision and language tasks, with nine models, four datasets, and three settings (inference-only, adaptation, and fine-tuning). Our extensive results show that 1) being applied to inference, SmartDeal achieves up to 2.44x improvement in energy efficiency as evaluated using real hardware implementations and 2) being applied to training, SmartDeal can lead to 10.56x and 4.48x reduction in the storage and the training energy cost, respectively, with usually negligible accuracy loss, compared to state-of-the-art training baselines. Our source codes are available at: https://github.com/VITA-Group/SmartDeal. 
    more » « less
  4. null (Ed.)
    Deep neural networks (DNNs) are increasingly used for real-time inference, requiring low latency, but require significant computational power as they continue to increase in complexity. Edge clouds promise to offer lower latency due to their proximity to end-users and having powerful accelerators like GPUs to provide the computation power needed for DNNs. But it is also important to ensure that the edge-cloud resources are utilized well. For this, multiplexing several DNN models through spatial sharing of the GPU can substantially improve edge-cloud resource usage. Typical GPU runtime environments have significant interactions with the CPU, to transfer data to the GPU, for CPU-GPU synchronization on inference task completions, etc. These result in overheads. We present a DNN inference framework with a set of software primitives that reduce the overhead for DNN inference, increase GPU utilization and improve performance, with lower latency and higher throughput. Our first primitive uses the GPU DMA effectively, reducing the CPU cycles spent to transfer the data to the GPU. A second primitive uses asynchronous ‘events’ for faster task completion notification. GPU runtimes typically preclude fine-grained user control on GPU resources, causing long GPU downtimes when adjusting resources. Our third primitive supports overlapping of model-loading and execution, thus allowing GPU resource re-allocation with very little GPU idle time. Our other primitives increase inference throughput by improving scheduling and processing more requests. Overall, our primitives decrease inference latency by more than 35% and increase DNN throughput by 2-3×. 
    more » « less
  5. The ever increasing size of deep neural network (DNN) models once implied that they were only limited to cloud data centers for runtime inference. Nonetheless, the recent plethora of DNN model compression techniques have successfully overcome this limit, turning into a reality that DNN-based inference can be run on numerous resource-constrained edge devices including mobile phones, drones, robots, medical devices, wearables, Internet of Things devices, among many others. Naturally, edge devices are highly heterogeneous in terms of hardware specification and usage scenarios. On the other hand, compressed DNN models are so diverse that they exhibit different tradeoffs in a multi-dimension space, and not a single model can achieve optimality in terms of all important metrics such as accuracy, latency and energy consumption. Consequently, how to automatically select a compressed DNN model for an edge device to run inference with optimal quality of experience (QoE) arises as a new challenge. The state-of-the-art approaches either choose a common model for all/most devices, which is optimal for a small fraction of edge devices at best, or apply device-specific DNN model compression, which is not scalable. In this paper, by leveraging the predictive power of machine learning and keeping end users in the loop, we envision an automated device-level DNN model selection engine for QoE-optimal edge inference. To concretize our vision, we formulate the DNN model selection problem into a contextual multi-armed bandit framework, where features of edge devices and DNN models are contexts and pre-trained DNN models are arms selected online based on the history of actions and users' QoE feedback. We develop an efficient online learning algorithm to balance exploration and exploitation. Our preliminary simulation results validate our algorithm and highlight the potential of machine learning for automating DNN model selection to achieve QoE-optimal edge inference. 
    more » « less