skip to main content

Title: A MEMS lens scanner based on serpentine electrothermal bimorph actuators for large axial tuning

Confocal microscopes and two-photon microscopes are powerful tools for early cancer diagnosis because of their high-resolution 3D imaging capability, but applying them for clinical use in internal organs is hindered by the lack of axially tunable lens modules with small size, high image quality and large tuning range. This paper reports a compact MEMS lens scanner that has the potential to overcome this limitation. The MEMS lens scanner consists of a MEMS microstage and a microlens. The MEMS microstage is based on a unique serpentine inverted-series-connected (ISC) electrothermal bimorph actuator design. The microlens is an aspheric glass lens to ensure optical quality. The MEMS microstage has been fabricated and the lens scanner has been successfully assembled. The entire lens scanner is circular with an outer diameter of 4.4 mm and a clear optical aperture of 1.8 mm. Experiments show that the tunable range reaches over 200 µm at only 10.5 V and the stiffness of the microstage is 6.2 N/m. Depth scan imaging by the MEMS lens scanner has also been demonstrated with a 2.2 µm resolution, only limited by the available resolution target.

; ; ; ;
Publication Date:
Journal Name:
Optics Express
Page Range or eLocation-ID:
Article No. 23439
1094-4087; OPEXFF
Optical Society of America
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate a two-dimensional, individually tunable electrowetting microlens array fabricated using standard microfabrication techniques. Each lens in our array has a large range of focal tunability from −1.7 mm to −∞ in the diverging regime, which we verify experimentally from 0 to 75 V for a device coated in Parylene C. Additionally, each lens can be actuated to within 1% of their steady-state value within 1.5 ms. To justify the use of our device in a phase-sensitive optical system, we measure the wavefront of a beam passing through the center of a single lens in our device over the actuation range and show that these devices have a surface quality comparable to static microlens arrays. The large range of tunability, fast response time, and excellent surface quality of these devices open the door to potential applications in compact optical imaging systems, transmissive wavefront shaping, and beam steering.

  2. Abstract

    Miniature lenses with a tunable focus are essential components for many modern applications involving compact optical systems. While several tunable lenses have been reported with various tuning mechanisms, they often face challenges with respect to power consumption, tuning speed, fabrication cost, or production scalability. In this work, we have adapted the mechanism of an Alvarez lens – a varifocal composite lens in which lateral shifts of two optical elements with cubic phase surfaces give rise to a change in the optical power – to construct a miniature, microelectromechanical system (MEMS)-actuated metasurface Alvarez lens. Implementation based on an electrostatic MEMS generates fast and controllable actuation with low power consumption. The utilization of metasurfaces – ultrathin and subwavelength-patterned diffractive optics – as optical elements greatly reduces the device volume compared to systems using conventional freeform lenses. The entire MEMS Alvarez metalens is fully compatible with modern semiconductor fabrication technologies, granting it the potential to be mass-produced at a low unit cost. In the reported prototype operating at 1550 nm wavelength, a total uniaxial displacement of 6.3 µm was achieved in the Alvarez metalens with a direct-current (DC) voltage application up to 20 V, which modulated the focal position within a total tuning range ofmore »68 µm, producing more than an order of magnitude change in the focal length and a 1460-diopter change in the optical power. The MEMS Alvarez metalens has a robust design that can potentially generate a much larger tuning range without substantially increasing the device volume or energy consumption, making it desirable for a wide range of imaging and display applications.

    « less
  3. Abstract

    Laser scanning microscopes can be miniaturized for in vivo imaging by substituting optical microelectromechanical system (MEMS) devices in place of larger components. The emergence of multifunctional active optical devices can support further miniaturization beyond direct component replacement because those active devices enable diffraction-limited performance using simpler optical system designs. In this paper, we propose a catadioptric microscope objective lens that features an integrated MEMS device for performing biaxial scanning, axial focus adjustment, and control of spherical aberration. The MEMS-in-the-lens architecture incorporates a reflective MEMS scanner between a low-numerical-aperture back lens group and an aplanatic hyperhemisphere front refractive element to support high-numerical-aperture imaging. We implemented this new optical system using a recently developed hybrid polymer/silicon MEMS three-dimensional scan mirror that features an annular aperture that allows it to be coaxially aligned within the objective lens without the need for a beam splitter. The optical performance of the active catadioptric system is simulated and imaging of hard targets and human cheek cells is demonstrated with a confocal microscope that is based on the new objective lens design.

  4. In this work, we report a biopsy‐needle compatible rigid probe, capable of performing three‐dimensional (3D) two‐photon optical biopsy. The probe has a small outer diameter of 1.75 mm and fits inside a gauge‐14 biopsy needle to reach internal organs. A carefully designed focus scanning mechanism has been implemented in the rigid probe, which, along with a rapid two‐dimensional MEMS scanner, enables 3D imaging. Fast image acquisition up to 10 frames per second is possible, dramatically reducing motion artifacts duringin vivoimaging. Equipped with a high‐numerical aperture micro‐objective, the miniature rigid probe offers a high two‐photon resolution (0.833 × 6.11 μm, lateral × axial), a lateral field of view of 120 μm, and an axial focus tuning range of 200 μm. In addition to imaging of mouse internal organs and subcutaneous tumorin vivo, first‐of‐its‐kind depth‐resolved two‐photon optical biopsy of an internal organ has been successfully demonstrated on mouse kidneyin vivoandin situ.

  5. Abstract

    Wavefront sensing is the simultaneous measurement of the amplitude and phase of an incoming optical field. Traditional wavefront sensors such as Shack-Hartmann wavefront sensor (SHWFS) suffer from a fundamental tradeoff between spatial resolution and phase estimation and consequently can only achieve a resolution of a few thousand pixels. To break this tradeoff, we present a novel computational-imaging-based technique, namely, the Wavefront Imaging Sensor with High resolution (WISH). We replace the microlens array in SHWFS with a spatial light modulator (SLM) and use a computational phase-retrieval algorithm to recover the incident wavefront. This wavefront sensor can measure highly varying optical fields at more than 10-megapixel resolution with the fine phase estimation. To the best of our knowledge, this resolution is an order of magnitude higher than the current noninterferometric wavefront sensors. To demonstrate the capability of WISH, we present three applications, which cover a wide range of spatial scales. First, we produce the diffraction-limited reconstruction for long-distance imaging by combining WISH with a large-aperture, low-quality Fresnel lens. Second, we show the recovery of high-resolution images of objects that are obscured by scattering. Third, we show that WISH can be used as a microscope without an objective lens. Our study suggestsmore »that the designing principle of WISH, which combines optical modulators and computational algorithms to sense high-resolution optical fields, enables improved capabilities in many existing applications while revealing entirely new, hitherto unexplored application areas.

    « less