skip to main content


Title: Designing for learning during collaborative projects online: tools and takeaways
Purpose In response to the evolving COVID-19 pandemic, many universities have transitioned to online instruction. With learning promising to be online, at least in part, for the near future, instructors may be thinking of providing online collaborative learning opportunities to their students who are increasingly isolated from their peers because of social distancing guidelines. This paper aims to provide design recommendations for online collaborative project-based learning exercises based on this research in a software engineering course at the university level. Design/methodology/approach Through joint work between learning scientists, course instructors and software engineering practitioners, instructional design best practices of alignment between the context of the learners, the learning objectives, the task and the assessment are actualized in the design of collaborative programming projects for supporting learning. The design, first segments a short real-time collaborative exercise into tasks, each with a problem-solving phase where students participate in collaborative programming, and a reflection phase for reflecting on what they learned in the task. Within these phases, a role-assignment paradigm scaffolds collaboration by assigning groups of four students to four complementary roles that rotate after each task. Findings By aligning each task with granular learning objectives, significant pre- to post-test learning from the exercise as well as each task is observed. Originality/value The roles used in the paradigm discourage divide-and-conquer tendencies often associated with collaborative projects. By requiring students to discuss conflicting ideas to arrive at a consensus implementation, their ideas are made explicit, thus providing opportunities for clarifying misconceptions through discussion and learning from the collaboration.  more » « less
Award ID(s):
1917955 1822831
NSF-PAR ID:
10174688
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Information and Learning Sciences
Volume:
ahead-of-print
Issue:
ahead-of-print
ISSN:
2398-5348
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Over the past two decades, educators have used computer-supported collaborative learning (CSCL) to integrate technology with pedagogy to improve student engagement and learning outcomes. Researchers have also explored the diverse affordances of CSCL, its contributions to engineering instruction, and its effectiveness in K-12 STEM education. However, the question of how students use CSCL resources in undergraduate engineering classrooms remains largely unexplored. This study examines the affordances of a CSCL environment utilized in a sophomore dynamics course with particular attention given to the undergraduate engineering students’ use of various CSCL resources. The resources include a course lecturebook, instructor office hours, a teaching assistant help room, online discussion board, peer collaboration, and demonstration videos. This qualitative study uses semi-structured interview data collected from nine mechanical engineering students (four women and five men) who were enrolled in a dynamics course at a large public research university in Eastern Canada. The interviews focused on the individual student’s perceptions of the school, faculty, students, engineering courses, and implemented CSCL learning environment. The thematic analysis was conducted to analyze the transcribed interviews using a qualitative data analysis software (Nvivo). The analysis followed a six step process: (1) reading interview transcripts multiple times and preliminary in vivo codes; (2) conducting open coding by coding interesting or salient features of the data; (3) collecting codes and searching for themes; (4) reviewing themes and creating a thematic map; (5) finalizing themes and their definitions; and (6) compiling findings. This study found that the students’ use of CSCL resources varied depending on the students’ personal preferences, as well as their perceptions of the given resource’s value and its potential to enhance their learning. For example, the dynamics lecturebook, which had been redesigned to encourage problem solving and note-taking, fostered student collaborative problem solving with their peers. In contrast, the professor’s example video solutions had much more of an influence on students’ independent problem-solving processes. The least frequently used resource was the course’s online discussion forum, which could be used as a means of communication. The findings reveal how computer-supported collaborative learning (CSCL) environments enable engineering students to engage in multiple learning opportunities with diverse and flexible resources to both address and to clarify their personal learning needs. This study strongly recommends engineering instructors adapt a CSCL environment for implementation in their own unique classroom context. 
    more » « less
  2. Purpose. To make course-based, undergraduate design projects more manageable, instructors often reduce or remove the open-ended quality, which in turn limits opportunities for students to learn to frame design problems. Here we introduce and characterize the construct, framing agency, which involves taking up opportunities to make consequential decisions about design problems and how to proceed in learning and developing solutions. Methodology. We employed a multi-case study design, selecting cases of student design teams across different sites and levels, all in undergraduate engineering courses. Teams were audio/video recorded during their design process. We adapted a functional linguistics tool [1] to identify markers of agency in students’ design discourse, comparing and contrasting the cases to illuminate the nuances of framing agency. We also identified learning versus task-completion orientations. Results. All students exhibited agency in some form, but not all exhibited framing agency. Analysis suggests that framing agency is commonly shared across participants and tentative in nature early in the design process. Students who exhibited framing agency tended to adopt a learning rather than task-completion orientation. Students who exhibited agency, but not framing agency, made decisions that foregrounded accuracy and efficiency at the expense of exploring tentative ideas, and tended to treat the problem as having a single right answer. Conclusions. We argue that how students negotiate design problem framing depends on whether or not they consider the design problem relevant and authentic, the belief that each member brings different and potentially useful information to the task, and the opportunity to iterate design ideas over time. Framing agency provides a lens for understanding the kinds of design learning experiences students need to direct their own learning and negotiate that learning with peers in design projects. 
    more » « less
  3. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  4. Computer science pedagogy, especially in the higher education and vocational training context, has long-favored the hands-on practice provided by programming tasks due to the belief that this leads to better performance on hands-on tasks at work. This assumption, however, has not been experimentally tested against other modes of engagement such as worked example-based reflection. While theory suggests that example-based reflection could be better for conceptual learning, the concern is that the lack of practice will leave students unable to implement the learned concepts in practice, thus leaving them unprepared for work. In this paper, therefore, we experimentally contrast programming practice with example-based reflection to observe their differential impact on conceptual learning and performance on a hands-on task in the context of a collaborative programming project. The industry paradigm of Mob Programming, adapted for use in an online and instructional context, is used to structure the collaboration. Keeping with the prevailing view held in pedagogy, we hypothesize that example-based reflection will lead to better conceptual learning but will be detrimental to hands-on task performance. Results support that reflection leads to conceptual learning. Additionally, however, reflection does not pose an impediment to hands-on task performance. We discuss possible explanations for this effect, thus providing an improved understanding of prior theory in this new computer science education context. We also discuss implications for the pedagogy of software engineering education, in light of this new evidence, that impacts student learning as well as work performance in the future. 
    more » « less
  5. A solid understanding of electromagnetic (E&M) theory is key to the education of electrical engineering students. However, these concepts are notoriously challenging for students to learn, due to the difficulty in grasping abstract concepts such as the electric force as an invisible force that is acting at a distance, or how electromagnetic radiation is permeating and propagating in space. Building physical intuition to manipulate these abstractions requires means to visualize them in a three-dimensional space. This project involves the development of 3D visualizations of abstract E&M concepts in Virtual Reality (VR), in an immersive, exploratory, and engaging environment. VR provides the means of exploration, to construct visuals and manipulable objects to represent knowledge. This leads to a constructivist way of learning, in the sense that students are allowed to build their own knowledge from meaningful experiences. In addition, the VR labs replace the cost of hands-on labs, by recreating the experiments and experiences on Virtual Reality platforms. The development of the VR labs for E&M courses involves four distinct phases: (I) Lab Design, (II) Experience Design, (III) Software Development, and (IV) User Testing. During phase I, the learning goals and possible outcomes are clearly defined, to provide context for the VR laboratory experience, and to identify possible technical constraints pertaining to the specific laboratory exercise. During stage II, the environment (the world) the player (user) will experience is designed, along with the foundational elements, such as ways of navigation, key actions, and immersion elements. During stage III, the software is generated as part of the course projects for the Virtual Reality course taught in the Computer Science Department at the same university, or as part of independent research projects involving engineering students. This reflects the strong educational impact of this project, as it allows students to contribute to the educational experiences of their peers. During phase IV, the VR experiences are played by different types of audiences that fit the player type. The team collects feedback and if needed, implements changes. The pilot VR Lab, introduced as an additional instructional tool for the E&M course during the Fall 2019, engaged over 100 students in the program, where in addition to the regular lectures, students attended one hour per week in the E&M VR lab. Student competencies around conceptual understanding of electromagnetism topics are measured via formative and summative assessments. To evaluate the effectiveness of VR learning, each lab is followed by a 10-minute multiple-choice test, designed to measure conceptual understanding of the various topics, rather than the ability to simply manipulate equations. This paper discusses the implementation and the pedagogy of the Virtual Reality laboratory experiences to visualize concepts in E&M, with examples for specific labs, as well as challenges, and student feedback with the new approach. We will also discuss the integration of the 3D visualizations into lab exercises, and the design of the student assessment tools used to assess the knowledge gain when the VR technology is employed. 
    more » « less