The colonias in Texas along the Mexican border are self-built neighborhoods of low-income families that lack basic infrastructure. While some funding from the State of Texas has built roads and provided electricity, water and sewage systems are still lacking for many of the estimated 400,000 colonias’ residents. Of those that do have tap water, the supply is either inadequate or of questionable quality. These communities have suffered from waterborne disease, such as cholera epidemics, over the past few decades. This research is the first to collect a comprehensive dataset on water use, socio-economic parameters, and actual water quality in selected colonias in several counties in Texas. A quantitative statistical model has been developed using structural equation modeling, that relates social drivers for water use and management with actual water quality. Water quality parameters measured in these communities include traditional microbial indicators (total coliforms, E. coli, and heterotrophs), pH, hardness, free and total chlorine, and metals (arsenic and lead). The model explores relationships among latent variables relating water, health, and living situation to assess potential impacts of a water treatment technology in these low-income households. The study provides quantitatively reports for the need and desire of adopting a point-of-use treatment system, evaluates the relationship between perceived versus actual water quality, and determines the factors that influence the choice of drinking water. This model can be adopted for identifying social drivers for water use and management in other low-income communities in the United States.
more »
« less
Compromised Water Quality in Colonias of Nueces County, TX: A Vicious Cycle
Colonias are self-built neighborhoods of mostly low-income families that lack basic infrastructure. While some funding from the state government has built roads and provided electricity, water and sewage systems are still lacking for many of the estimated 400,000 colonias’ residents in Texas. Of those that do have tap water, the supply is either inadequate or of questionable quality. Some colonias residents have access only to off-the-grid water supplies, and residents collect their water from community wells, or, if fortunate, from a personal well. Many of these wells are self-built and therefore shallow. In Nueces County, the groundwater in several colonias has been reported to contain arsenic, while poor sanitation practices (i.e., self-built septic systems) and heavy rainfall events in the region compromise the microbial quality of the groundwater. The naturally occurring arsenic in the aquifer and microbial contaminants from flooding events mean that the only available drinking water source in these colonias is contaminated throughout the year. In this research, datasets on water quality in nine colonias in Nueces County were collected both in wet (after a major rain/flooding event) and dry (no significant rainfall for four weeks) periods. The water quality analyses included traditional microbial quality assessment (total coliforms, Escherichia coli, and heterotrophs), pH, hardness, total dissolved solids, and a suite of metals that are relevant to human health (e.g., arsenic and lead). Microbial community analyses also were completed on select samples to assess the shifts in microbial ecology between wet and dry periods. Results reveal that water quality varies based on environmental conditions and presents a serious risk to human health. Water sampled during the wet period had extensive microbial contamination with elevated heterotrophs and total coliforms, and E. coli was identified in some samples. In the dry period, water from a number of colonias exhibited elevated levels of arsenic (above United States Environmental Protection Agency’s Maximum Contaminant Level of 10 µg/L). This study is one of the first to systematically investigate water quality in Texas colonias, and the results highlight how water quality in these communities is compromised year-round, going between microbial contamination in wet events and arsenic contamination in dry events.
more »
« less
- Award ID(s):
- 1805958
- PAR ID:
- 10174729
- Date Published:
- Journal Name:
- University of North Carolina Chapel Hill Water & Health Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Private groundwater wells can be unmonitored sources of contaminated water that can harm human health. Developing models that predict exposure could allow residents to take action to reduce risk. Machine learning models have been successful in predicting nitrate contamination using geospatial information such as proximity to nitrate sources, but previous models have not considered meteorological factors that change temporally. In this study, we test random forest (regression and classification) and linear regression models to predict nitrate contamination using rainfall, temperature, and readily available soil parameters. We trained and tested models for (1) all of North Carolina, (2) each geographic region in North Carolina, (3) a three‐county region with a high density of animal agriculture, and (4) a three‐county region with a low density of animal agriculture. All regression models had poor predictive performance (R2 < 0.09). The random forest classification model for the coastal plain showed fair agreement (Cohen'sκ = 0.23) when trying to predict whether contamination occurred. All other classification models had slight or poor predictive performance. Our results show that temporal changes in rainfall and temperature, or in combination with soil data, are not enough to predict nitrate contamination in most areas of North Carolina. The low level of contamination (<25%) measured during the study could have contributed to the poor performance of the models.more » « less
-
Domestic wells provide drinking water to 44 million people nationwide. Many of these wells, which remain federally unregulated and rarely tested for pollutants, serve rural populations clustered near surface-contaminated sites (e.g., hazardous waste sites, animal agriculture operations, coal ash ponds, etc.). The potential for natural disasters to deteriorate drinking water quality is well documented. Less understood is whether opportunistic post-disaster sampling might underrepresent vulnerable populations. When disaster strikes, well water sampling campaigns offer a glimpse into the quality of water for exposed residents. We examined over 8,000 well water samples from 2016 and 2017 to measure Hurricane Matthew’s impact on the presence of indicator bacteria. Bacteria presence was predicted at the household level following Hurricane Matthew’s landfall. The residential addresses associated with birth records as well as clinically estimated dates of conception and birth dates were used to predict the likelihood of indicator bacteria in drinking water sources that were unsampled but likely to have served pregnant women. We estimate that opportunistic well water sampling captures the average predicted contamination rates among households with pregnant women. Our approach documents a distribution of contamination risk where 2.7% of the vulnerable sample (670 unsampled households) have a 75% likelihood of total coliform presence. The predicted likelihood of indicator bacteria is elevated for a small share of households nearby swine lagoons that experienced the most torrential rainfall. However, the gap between sampled and unsampled households cannot otherwise be explained by the storm event or proximity to surface-contaminated sites. Findings suggest that sophisticated and holistic water quality prediction models may support post-disaster sampling campaigns by targeting individual households within vulnerable groups that are likely to experience higher risks from groundwater contamination.more » « less
-
null (Ed.)Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E . coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E . coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds ( E . coli , 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E . coli , enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log 10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.more » « less
-
Water-levels and salinity were measured in seven shallow (ca. 2 m deep) wells installed at distances proximal, medial, and distal to the source of tidal flooding between 2017 and 2019 in a warm-season grass meadow adjacent to a salt marsh. Water-table fluctuations greater than 10-cm were associated with seawater, precipitation, or a combination of the two. When the field was flooded by tides (> 0.5 m above predicted), groundwater salinity increased; when the field was flooded by precipitation (> 2.5 cm), the salinity of the groundwater decreased. The increased head gradient that accompanied the rise in the water table appeared to be sufficient to allow the freshwater from precipitation to push the salt water down and towards the marsh creek, resulting in a freshening of the groundwater that persisted until the next saltwater flooding event. Thus, the relative frequency between saltwater flooding, salinization, freshwater flooding, and flushing controlled the groundwater salinity. These findings indicate the importance of high-tide events in the process of salinization of the groundwater and the ameliorating effects of rainfall events whose magnitude is sufficient to increase groundwater elevation at least ten centimeters. Further, they contribute to a growing body of evidence in support of the interaction between fresh- and saltwater flooding events to enhance the salinity of groundwater and drive ecosystem transition from uplands to salt marshes.more » « less
An official website of the United States government

