skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analyzing the grain‐boundary resistance of oxide‐ion conducting electrolytes: Poisson‐Cahn vs Poisson‐Boltzmann theories
Award ID(s):
1705397
PAR ID:
10174740
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
103
Issue:
1
ISSN:
0002-7820
Page Range / eLocation ID:
5 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The two main approaches to the study of irreducible representations of orders (via traces and Poisson orders) have so far been applied in a completely independent fashion. We define and study a natural compatibility relation between the two approaches leading to the notion of Poisson trace orders. It is proved that all regular and reduced traces are always compatible with any Poisson order structure. The modified discriminant ideals of all Poisson trace orders are proved to be Poisson ideals and the zero loci of discriminant ideals are shown to be unions of symplectic cores, under natural assumptions (maximal orders and Cayley–Hamilton algebras). A base change theorem for Poisson trace orders is proved. A broad range of Poisson trace orders are constructed based on the proved theorems: quantized universal enveloping algebras, quantum Schubert cell algebras and quantum function algebras at roots of unity, symplectic reflection algebras, 3D and 4D Sklyanin algebras, Drinfeld doubles of pre-Nichols algebras of diagonal type, and root of unity quantum cluster algebras. 
    more » « less
  2. Robert Taylor (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Abstract Zero-inflated and hurdle models are widely applied to count data possessing excess zeros, where they can simultaneously model the process from how the zeros were generated and potentially help mitigate the effects of overdispersion relative to the assumed count distribution. Which model to use depends on how the zeros are generated: zero-inflated models add an additional probability mass on zero, while hurdle models are two-part models comprised of a degenerate distribution for the zeros and a zero-truncated distribution. Developing confidence intervals for such models is challenging since no closed-form function is available to calculate the mean. In this study, generalized fiducial inference is used to construct confidence intervals for the means of zero-inflated Poisson and Poisson hurdle models. The proposed methods are assessed by an intensive simulation study. An illustrative example demonstrates the inference methods. 
    more » « less