skip to main content

Title: Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli
Many photosynthetic organisms employ a CO 2 concentrating mechanism (CCM) to increase the rate of CO 2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO 2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO 2 assimilation in diverse organisms.
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Polyacetylenic lipids accumulate in various Apiaceae species after pathogen attack, suggesting that these compounds are naturally occurring pesticides and potentially valuable resources for crop improvement. These compounds also promote human health and slow tumor growth. Even though polyacetylenic lipids were discovered decades ago, the biosynthetic pathway underlying their production is largely unknown. To begin filling this gap and ultimately enable polyacetylene engineering, we studied polyacetylenes and their biosynthesis in the major Apiaceae crop carrot (Daucus carota subsp. sativus). Using gas chromatography and mass spectrometry, we identified three known polyacetylenes and assigned provisional structures to two novel polyacetylenes. We also quantified these compounds in carrot leaf, petiole, root xylem, root phloem, and root periderm extracts. Falcarindiol and falcarinol predominated and accumulated primarily in the root periderm. Since the multiple double and triple carbon-carbon bonds that distinguish polyacetylenes from ubiquitous fatty acids are often introduced by Δ12 oleic acid desaturase (FAD2)-type enzymes, we mined the carrot genome for FAD2 genes. We identified a FAD2 family with an unprecedented 24 members and analyzed public, tissue-specific carrot RNA-Seq data to identify coexpressed members with root periderm-enhanced expression. Six candidate genes were heterologously expressed individually and in combination in yeast and Arabidopsis (Arabidopsis thaliana), resultingmore »in the identification of one canonical FAD2 that converts oleic to linoleic acid, three divergent FAD2-like acetylenases that convert linoleic into crepenynic acid, and two bifunctional FAD2s with Δ12 and Δ14 desaturase activity that convert crepenynic into the further desaturated dehydrocrepenynic acid, a polyacetylene pathway intermediate. These genes can now be used as a basis for discovering other steps of falcarin-type polyacetylene biosynthesis, to modulate polyacetylene levels in plants, and to test the in planta function of these molecules. Many organisms implement specialized biochemical pathways to convert ubiquitous metabolites into bioactive chemical compounds. Since plants comprise the majority of the human diet, specialized plant metabolites play crucial roles not only in crop biology but also in human nutrition. Some asterids produce lipid compounds called polyacetylenes (for review, see Negri, 2015) that exhibit antifungal activity (Garrod et al., 1978; Kemp, 1978; Harding and Heale, 1980, 1981; Olsson and Svensson, 1996) and accumulate in response to fungal phytopathogen attack (De Wit and Kodde, 1981; Elgersma and Liem, 1989). These observations have led to the longstanding hypothesis that polyacetylenes are natural pesticides. These same lipid compounds exhibit cytotoxic activity against human cancer cell lines and slow tumor growth (Fujimoto and Satoh, 1988; Matsunaga et al., 1989, 1990; Cunsolo et al., 1993; Bernart et al., 1996; Kobaek-Larsen et al., 2005; Zidorn et al., 2005), making them important nutritional compounds. The major source of polyacetylenes in the human diet is carrot (Daucus carota L.). Carrot is one of the most important crop species in the Apiaceae, with rapidly increasing worldwide cultivation (Rubatzky et al., 1999; Dawid et al., 2015). The most common carrot polyacetylenes are C17 linear aliphatic compounds containing two conjugated carbon-carbon triple bonds, one or two carbon-carbon double bonds, and a diversity of additional in-chain oxygen-containing functional groups. In carrot, the most abundant of these compounds are falcarinol and falcarindiol (Dawid et al., 2015). Based on their structures, it has been hypothesized that these compounds (alias falcarin-type polyacetylenes) are derived from ubiquitous fatty acids. Indeed, biochemical investigations (Haigh et al., 1968; Bohlman, 1988), radio-chemical tracer studies (Barley et al., 1988), and the discovery of pathway intermediates (Jones et al., 1966; Kawazu et al., 1973) implicate a diversion of flux away from linolenate biosynthesis as the entry point into falcarin-type polyacetylene biosynthesis (for review, see Minto and Blacklock, 2008). The final steps of linolenate biosynthesis are the conversion of oleate to linoleate, mediated by fatty acid desaturase 2 (FAD2), and linoleate to linolenate, catalyzed by FAD3. Some plant species contain divergent forms of FAD2 that, instead of or in addition to converting oleate to linoleate, catalyze the installation of unusual in-chain functional groups such as hydroxyl groups, epoxy groups, conjugated double bonds, or carbon-carbon triple bonds into the acyl chain (Badami and Patil, 1980) and thus divert flux from linolenate production into the accumulation of unusual fatty acids. Previous work in parsley (Petroselinum crispum; Apiaceae) identified a divergent form of FAD2 that (1) was up-regulated in response to pathogen treatment and (2) when expressed in soybean embryos resulted in production of the monoyne crepenynate and, by the action of an unassigned enzyme, dehydrocrepenynate (Kirsch et al., 1997; Cahoon et al., 2003). The results of the parsley studies are consistent with a pathogen-responsive, divergent FAD2-mediated pathway that leads to acetylenic fatty acids. However, information regarding the branch point into acetylenic fatty acid production in agriculturally relevant carrot is still largely missing, in particular, the identification and functional characterization of enzymes that can divert carbon flux away from linolenate biosynthesis into the production of dehydrocrepenynate and ultimately falcarin-type polyacetylenes. Such genes, once identified, could be used in the future design of transgenic carrot lines with altered polyacetylene content, enabling direct testing of in planta polyacetylene function and potentially the engineering of pathogen-resistant, more nutritious carrots. These genes could also provide the foundation for further investigations of more basic aspects of plant biology, including the evolution of fatty acid-derived natural product biosynthesis pathways across the Asterid clade, as well as the role of these pathways and compounds in plant ecology and plant defense. Recently, a high-quality carrot genome assembly was released (Iorizzo et al., 2016), providing a foundation for genome-enabled studies of Apiaceous species. This study also provided publicly accessible RNA sequencing (RNA-Seq) data from diverse carrot tissues. Using these resources, this study aimed to provide a detailed gas chromatography-based quantification of polyacetylenes in carrot tissues for which RNA-Seq data are available, then combine this information with bioinformatics analysis and heterologous expression to identify and characterize biosynthetic genes that underlie the major entry point into carrot polyacetylene biosynthesis. To achieve these goals, thin-layer chromatography (TLC) was combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection to identify and quantify polyacetylenic metabolites in five different carrot tissues. Then the sequences and tissue expression profiles of potential FAD2 and FAD2-like genes annotated in the D. carota genome were compared with the metabolite data to identify candidate pathway genes, followed by biochemical functionality tests using yeast (Saccharomyces cerevisae) and Arabidopsis (Arabidopsis thaliana) as heterologous expression systems.« less
  2. Colwellia psychrerythraea34H is a model psychrophilic bacterium found in the cold ocean—polar sediments, sea ice, and the deep sea. Although the genomes of such psychrophiles have been sequenced, their metabolic strategies at low temperature have not been quantified. We measured the metabolic fluxes and gene expression of 34H at 4 °C (the mean global-ocean temperature and a normal-growth temperature for 34H), making comparative analyses at room temperature (above its upper-growth temperature of 18 °C) and with mesophilicEscherichia coli. When grown at 4 °C, 34H utilized multiple carbon substrates without catabolite repression or overflow byproducts; its anaplerotic pathways increased flux network flexibility and enabled CO2fixation. In glucose-only medium, the Entner–Doudoroff (ED) pathway was the primary glycolytic route; in lactate-only medium, gluconeogenesis and the glyoxylate shunt became active. In comparison,E. coli, cold stressed at 4 °C, had rapid glycolytic fluxes but no biomass synthesis. At their respective normal-growth temperatures, intracellular concentrations of TCA cycle metabolites (α-ketoglutarate, succinate, malate) were 4–17 times higher in 34H than inE. coli, while levels of energy molecules (ATP, NADH, NADPH) were 10- to 100-fold lower. Experiments withE. colimutants supported the thermodynamic advantage of the ED pathway at cold temperature. Heat-stressed 34H at room temperature (2 hours) revealedmore »significant down-regulation of genes associated with glycolytic enzymes and flagella, while 24 hours at room temperature caused irreversible cellular damage. We suggest that marine heterotrophic bacteria in general may rely upon simplified metabolic strategies to overcome thermodynamic constraints and thrive in the cold ocean.

    « less
  3. In nature, concentrations of dissolved inorganic carbon (DIC; = CO 2 + HCO 3 - + CO 3 2- ) can be low, and autotrophic organisms adapt with a variety of mechanisms to elevate intracellular DIC concentrations to enhance CO 2 fixation. Such mechanisms have been well-studied in Cyanobacteria , but much remains to be learned about their activity in other phyla. Novel multi-subunit membrane-spanning complexes capable of elevating intracellular DIC were recently described in three species of bacteria. Homologs of these complexes are distributed among 17 phyla in Bacteria and Archaea, and are predicted to consist of one, two, or three subunits. To determine whether DIC accumulation is a shared feature of these diverse complexes, seven of them, representative of organisms from four phyla, from a variety of habitats, and with three different subunit configurations were chosen for study. A high-CO 2 requiring, carbonic anhydrase-deficient ( yadF - cynT - ) strain of E. coli Lemo21(DE3), which could be rescued via elevated intracellular DIC concentrations, was created for heterologous expression and characterization of the complexes. Expression of all seven complexes rescued the ability of E. coli Lemo21(DE3) yadF - cynT - to grow under low CO 2 conditions, andmore »six of the seven generated measurably elevated intracellular DIC concentrations when their expression was induced. For complexes consisting of two or three subunits, all subunits were necessary for DIC accumulation. Isotopic disequilibrium experiments clarified that CO 2 was the substrate for these complexes. In addition, the presence of an ionophore prevented the accumulation of intracellular DIC, suggesting that these complexes may couple proton potential to DIC accumulation. IMPORTANCE To facilitate the synthesis of biomass from CO 2 , autotrophic organisms use a variety of mechanisms to increase intracellular DIC concentrations. A novel type of multi-subunit complex has recently been described, which has been shown to generate measurably elevated intracellular DIC concentrations in three species of bacteria, begging the question of whether these complexes share this capability across the 17 phyla of Bacteria and Archaea where they are found. This study shows that DIC accumulation is a trait shared by complexes with varied subunit structures, from organisms with diverse physiologies and taxonomies, suggesting that this trait is universal among them. Successful expression in E. coli suggests the possibility of their expression in engineered organisms synthesizing compounds of industrial importance from CO 2 .« less
  4. Whether and how CO 2 and nitrogen (N) availability interact to influence carbon (C) cycling processes such as soil respiration remains a question of considerable uncertainty in projecting future C–climate feedbacks, which are strongly influenced by multiple global change drivers, including elevated atmospheric CO 2 concentrations (eCO 2 ) and increased N deposition. However, because decades of research on the responses of ecosystems to eCO 2 and N enrichment have been done largely independently, their interactive effects on soil respiratory CO 2 efflux remain unresolved. Here, we show that in a multifactor free-air CO 2 enrichment experiment, BioCON (Biodiversity, CO 2 , and N deposition) in Minnesota, the positive response of soil respiration to eCO 2 gradually strengthened at ambient (low) N supply but not enriched (high) N supply for the 12-y experimental period from 1998 to 2009. In contrast to earlier years, eCO 2 stimulated soil respiration twice as much at low than at high N supply from 2006 to 2009. In parallel, microbial C degradation genes were significantly boosted by eCO 2 at low but not high N supply. Incorporating those functional genes into a coupled C–N ecosystem model reduced model parameter uncertainty and improved the projections ofmore »the effects of different CO 2 and N levels on soil respiration. If our observed results generalize to other ecosystems, they imply widely positive effects of eCO 2 on soil respiration even in infertile systems.« less
  5. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial Nmore »export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018)« less