skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Defining and Measuring Students’ Interest in Biology: An Analysis of the Biology Education Literature
Understanding how students develop biology interests and the roles interest plays in biology contexts could help instructors and researchers to increase science, technology, engineering, and mathematics students’ motivation and persistence. However, it is currently unclear how interest has been defined or measured in the biology education research literature. We analyzed this body of literature to determine how interest has been defined and used by the biology education research community. Specifically, we determined the extent to which previously published work drew on theories that conceptualize interest. Further, we identified studies that measured student interest in biology and characterized the types of measures used. Our findings indicate that biology education researchers typically describe interest as a relationship involving positive feelings between an individual and a physical object, activity, or topic of focus. We also found that interest is often not defined, theories involving interest are not often consulted, and the most common measures of interest only assess a single aspect of the construct. On the basis of these results, we make suggestions for future research seeking to examine biology students’ interest. We hope that this analysis can serve as tool for biology educators to improve their own investigations of students’ interest and measure outcomes of interest-generating educational activities.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CBE—Life Sciences Education
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research paper measures college students' sense of belonging. Students' sense of belonging (SB) has been identified as a critical contributor to engineering students’ persistence, academic success, and professional identity in engineering. Therefore, how to accurately measure SB has become an emerging topic but is still challenging. Although engineering education researchers are interested in measuring students’ SB, they have presented concerns over selecting an appropriate instrument that results in trustworthy measurement outcomes. One of the reasons that cause challenges is that SB is a complicated construct that has various conceptual definitions. For example, Goodenow (1993) defined SB as “being accepted, valued, included, and encouraged by others...feeling oneself to be an important part of the life and activity of the class” (p. 25), which can be measured as a general SB. On the other hand, Freeman et al. (2007) viewed SB as a multi-dimensional construct that includes class belonging, university belonging, professors’ pedagogical caring, and social acceptance. Thus far, several instruments have been developed to measure SB from a single-dimensional perspective (e.g., Goodenow’s Psychological Sense of School Membership) and a multi-dimensional perspective (e.g., Slaten et al.’s the University Belonging Questionnaire). To our best knowledge, little research effort has been made to synthesize the information of instruments developed for measuring college students’ SB. This paper attempts to close the gap in the literature by conducting a systematic review following PRISMA (the Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines to summarize the information and characteristics of existing SB instruments, including the theoretical framework underlying the instrument, psychometric properties in previous studies, and validation works that have been carried out. Specifically, this paper focuses on the following aims: (a) to summarize how SB has been constructed and defined by different theories in higher education, (b) to report existing measurement instruments of SB used in higher education and their psychometric properties (reliability and validity), and (c) to compare various analytical plans for establishing the construct validity (including multicultural validity) in prior instrument development studies. The emergent findings provide insights into how to effectively measure SB and would facilitate school leaders' and educators’ work in promoting engineering students’ success and broadening participation in engineering. Keywords: Sense of belonging, engineering education, instrument, systematic review 
    more » « less
  2. Abstract Background

    Research in engineering education has highlighted the importance of identity and motivation for a number of student outcomes, including persistence. However, these constructs have often been studied separately, despite theorized and demonstrated connections between students' identity and motivation in other fields.


    Our study fills this gap by investigating the connections between identity and motivation. We specifically examined the connections between students' engineering role identity and future‐time perspective (FTP; a theory of human motivation) theories to understand students' interest in choosing an engineering major after their first year, which we call continuing engineering major interest.


    The data came from a questionnaire distributed during Fall 2015 (n = 2,879). Structural equation modeling was used to understand the connections between the latent factors of engineering role identity and FTP. We also examined the predictive validity of this model on students' continuing engineering major interest.


    Our results show connections between students' engineering role identity and the domain‐specific constructs of FTP. Identity was fully mediated by students' FTPs, and these perspectives were important for predicting continuing major interest. Engineering role identity measures explained a combined 69% of the variance in the FTP measures, and engineering role identity and FTP measures together explained 14.2% of the variance in engineering major interest.


    These findings provide empirical evidence for linking identity and motivation in studies of engineering students' career pathways. The results of this work inform how theories of identity and motivation can be used collectively in engineering education research.

    more » « less
  3. Measures of subject-related role identities in physics and math have been developed from research on the underlying constructs of identity in science education. The items for these measures capture three constructs of identity: students’ interest in the subject, students’ feeling of recognition by others, and students’ beliefs about their performance/competence in the subject area. In prior studies with late secondary and early post-secondary students, participants did not distinguish between performance beliefs (e.g., believing that they can do well in a particular subject) and competence beliefs (e.g., believing that they can understand a particular subject); therefore, performance/competence beliefs are measured as a single construct. These validated measures have been successful in predicting STEM career choices including physics, math, and engineering. Based on these measures of identity, literature on engineering identity, and my prior work on understanding engineering choice and belongingness through students’ science and math identities at the transition from high school to college, I developed a set of new engineering identity measures that capture and overall identification as an engineer, future engineering career identification, and students’ engineering-related interest, recognition, and performance/competence beliefs. I conducted a pilot survey of 371 first-year engineering students at three institutions within the U.S. during the spring semester of 2015. An exploratory factor analysis (EFA) was performed to examine the underlying structure of the piloted questions about students’ engineering identity. The measures loaded on three separate constructs that were consistent with the hypothesized constructs of interest, performance/competence and recognition. The developed items were used in a subsequent study deployed in the fall semester of 2015 that measured more than 2500 first-year engineering students’ attitudes and beliefs at four institutions within the U.S. The data on engineering identity measures from this second survey were analyzed using confirmatory factor analysis (CFA). The results indicated that the developed measures do extract a significant portion of the average variance in the latent constructs and the internal consistency of the measures (Cronbach’s α) falls within the acceptable and better range. The development of these items provides ways for engineering education researchers to more deeply explore the underlying self-beliefs in students’ engineering identity formation through quantitative measures with strong evidence for validity. 
    more » « less
  4. null (Ed.)
    ABSTRACT Calls for early exposure of all undergraduates to research have led to the increased use and study of course-based research experiences (CREs). CREs have been shown to increase measures of persistence in the sciences, such as science identity, scientific self-efficacy, project ownership, scientific community values, and networking. However, implementing CREs can be challenging and resource-intensive. These barriers may be partly mitigated by the use of short-term CRE modules rather than semester- or year-long projects. One study has shown that a CRE module captures some of the known benefits of CREs as measured by the Persistence in the Sciences (PITS) survey. Here, we used this same survey to assess outcomes for introductory biology students who completed a semester of modular CREs based on faculty research at an R1 university. The results indicated levels of self-efficacy, science community values, and science identity similar to those previously reported for students in the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) full-semester CRE. Scores for project ownership (content) were between previously reported traditional lab and CRE scores, while project ownership (emotion) and networking were similar to those of traditional labs. Our results suggest that modular CREs can lead to significant gains in student affect measures that have been linked to persistence in the sciences in other studies. Although gains were not as great in all measures as with a semester-long CRE, implementation of modular CREs may be more feasible and offers the added benefits of exposing students to diverse research fields and lab techniques. 
    more » « less
  5. Tanner (Ed.)
    Recent calls in biology education research (BER) have recommended that researchers leverage learning theories and methodologies from other disciplines to investigate the mechanisms by which students to develop sophisticated ideas. We suggest design-based research from the learning sciences is a compelling methodology for achieving this aim. Design-based research investigates the “learning ecologies” that move student thinking toward mastery. These “learning ecologies” are grounded in theories of learning, produce measurable changes in student learning, generate design principles that guide the development of instructional tools, and are enacted using extended, iterative teaching experiments. In this essay, we introduce readers to the key elements of design-based research, using our own research into student learning in undergraduate physiology as an example of design-based research in BER. Then, we discuss how design-based research can extend work already done in BER and foster interdisciplinary collaborations among cognitive and learning scientists, biology education researchers, and instructors. We also explore some of the challenges associated with this methodological approach. 
    more » « less