skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessment of Course-Based Research Modules Based on Faculty Research in Introductory Biology
ABSTRACT Calls for early exposure of all undergraduates to research have led to the increased use and study of course-based research experiences (CREs). CREs have been shown to increase measures of persistence in the sciences, such as science identity, scientific self-efficacy, project ownership, scientific community values, and networking. However, implementing CREs can be challenging and resource-intensive. These barriers may be partly mitigated by the use of short-term CRE modules rather than semester- or year-long projects. One study has shown that a CRE module captures some of the known benefits of CREs as measured by the Persistence in the Sciences (PITS) survey. Here, we used this same survey to assess outcomes for introductory biology students who completed a semester of modular CREs based on faculty research at an R1 university. The results indicated levels of self-efficacy, science community values, and science identity similar to those previously reported for students in the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) full-semester CRE. Scores for project ownership (content) were between previously reported traditional lab and CRE scores, while project ownership (emotion) and networking were similar to those of traditional labs. Our results suggest that modular CREs can lead to significant gains in student affect measures that have been linked to persistence in the sciences in other studies. Although gains were not as great in all measures as with a semester-long CRE, implementation of modular CREs may be more feasible and offers the added benefits of exposing students to diverse research fields and lab techniques.  more » « less
Award ID(s):
1821533 1750553
PAR ID:
10283531
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Microbiology & Biology Education
ISSN:
1935-7877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hewlett, James A. (Ed.)
    This study assesses the impacts of the Science program at Piedmont Virginia Community College and its flagship capstone research experience, Supervised Study, through psychosocial perceptions associated with persistence in science and through a comparative analysis of subsequent science bachelor’s degree attainment. Supervised Study involves authentic, independent projects, a research methods course and learning community, and one-on-one faculty mentoring. The Persistence in the Sciences survey was used as a repeated-measures instrument in four semesters of Supervised Study. Positive trends were observed for self-efficacy, science identity, community values, and networking, while responses related to project ownership were mixed ( n = 13). To contextualize these observations, transfer and bachelor’s degree completion rates were analyzed. Students who earn an associate’s degree in Science ( n = 113 between 2012 and 2019) complete bachelor’s degrees at high rates (66.4%). Moreover, they are two to four times more likely to major in physical and natural sciences than their science-oriented peers, who take many of the same courses, with the exception of Supervised Study. Notably, these comparison rates remain consistent between different demographic groups. These findings further describe a model for research at the community college level that supports persistence in undergraduate science for a broad group of students. 
    more » « less
  2. ABSTRACT As a validated assessment, the Microbiology for Health Sciences Concept Inventory (MHSCI) is a valuable tool to evaluate student progress in health sciences microbiology courses. In this brief analysis, we survey MHSCI faculty users and report student MHSCI scores to determine the impact on student learning gains of the COVID-19 pandemic and subsequent quarantine in spring 2020. Although a majority of students reported moving to a fully online lecture and lab microbiology course in the spring 2020 semester, there was no statistically significant impact on student outcomes reported by the MHSCI, and by some measures, student learning gains increased in the semester students moved to online learning. Further research is necessary to determine the continuing impact of online lecture/lab courses on student outcomes on the MHSCI. Our analysis of data from spring 2020 shows that the MHSCI is still a statistically reliable measure of student misconceptions and overall difficulty scores for each item on the MHSCI was unchanged due to the pandemic. 
    more » « less
  3. Frantz, Kyle (Ed.)
    In-person undergraduate research experiences (UREs) promote students’ integration into careers in life science research. In 2020, the COVID-19 pandemic prompted institutions hosting summer URE programs to offer them remotely, raising questions about whether undergraduates who participate in remote research can experience scientific integration and whether they might perceive doing research less favorably (i.e., not beneficial or too costly). To address these questions, we examined indicators of scientific integration and perceptions of the benefits and costs of doing research among students who participated in remote life science URE programs in Summer 2020. We found that students experienced gains in scientific self-efficacy pre- to post-URE, similar to results reported for in-person UREs. We also found that students experienced gains in scientific identity, graduate and career intentions, and perceptions of the benefits of doing research only if they started their remote UREs at lower levels on these variables. Collectively, students did not change in their perceptions of the costs of doing research despite the challenges of working remotely. Yet students who started with low cost perceptions increased in these perceptions. These findings indicate that remote UREs can support students’ self-efficacy development, but may otherwise be limited in their potential to promote scientific integration. 
    more » « less
  4. null (Ed.)
    Course-based undergraduate research experiences (CUREs) often involve a component where the outcomes of student research are broadly relevant to outside stakeholders. We wanted to see if building courses around an environmental justice issue relevant to the local community would impact students’ sense of civic engagement and appreciation of the relevance of scientific research to the community. In this quasi-experimental study, we assessed civic engagement and scientific identity gains ( N = 98) using pre- and post-semester surveys and open-ended interview responses in three different CUREs taught simultaneously at three different universities. All three CURES were focused on an environmental heavy metal pollution issue predominantly affecting African–Americans in Birmingham, Alabama. While we found increases in students’ sense of science efficacy and identity, our team was unable to detect meaningful changes in civic engagement levels, all of which were initially quite high. However, interviews suggested that students were motivated to do well in their research because the project was of interest to outside stakeholders. Our observations suggest that rather than directly influencing students’ civic engagement, the “broadly relevant” component of our CUREs engaged their pre-existing high levels of engagement to increase their engagement with the material, possibly influencing gains in science efficacy and science identity. Our observations are consistent with broader community relevance being an important component of CURE success, but do not support our initial hypothesis that CURE participation would influence students’ attitudes toward the civic importance of science. 
    more » « less
  5. Identity and belonging are key components to student longevity in STEM and are particularly important for retaining BIPOC, low-income, and first generation students. Previous work emphasizes the importance of scientific competence, research performance, and recognition by scientific community members as key to building a STEM identity that persists (Carlone & Johnson, 2007), increasing the likelihood of retention into the STEM workforce. The Keck Geology Consortium REU, with funding from NSF, developed the Gateway program for rising sophomores in 2017 to support and build these three components of science identity for underrepresented undergraduates in the geosciences. Here we present stories from the Glacier National Park, Montana environmental geoscience Gateway project, alongside consortium-wide data, and consider ways in which scientific identity is developed. In summers 2018 and 2022 we brought together groups of 5-8 students, mostly from underrepresented groups, all of whom were finishing their first year of college. Students were from a variety of backgrounds and institutions, but primarily from SLACs, and had little/no prior research experience. Projects lasted 5 weeks, with one week of pre-field knowledge and skill development (competence) two weeks in the field in eastern Glacier National Park collecting data, and two weeks at the Continental Scientific Drilling (CSD) laboratory at the University of Minnesota analyzing sediment cores. Students presented their research at subsequent Geological Society of America meetings (performance and recognition). Survey results and anecdotal stories suggest all three key aspects of STEM identity-building were supported by the projects. In addition to identity and values activities at the project start, blogging and reflection activities supported development and integration of a science identity. Performance and recognition opportunities were threaded throughout; students shared their research with the public (Park visitors encountered in the field), with Park Rangers/Interpretive staff (during informal presentations), and with staff, students, and visiting scientists at the CSD (daily interactions in the lab). These less-official forms of performance and recognition greatly contributed to the students’ sense of ownership and expertise. 
    more » « less