skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generation of Reactive Species in Water Film Dielectric Barrier Discharges Sustained in Argon, Helium, Air, Oxygen and Nitrogen
Activation of liquids with atmospheric pressure plasmas is being investigated for envi-ronmental and biomedical applications. When activating the liquid using gas plasma produced species (as opposed to plasmas sustained in the liquid), a rate limiting step is transport of these species into the liquid. To first order, the efficiency of activating the liquid is improved by in-creasing the ratio of the surface area of the water in contact with the plasma compared to its vol-ume – often called the surface-to-volume ratio (SVR). Maximizing the SVR then motivates the plasma treatment of thin films of liquids. In this paper, results are discussed from a computa-tional investigation using a global model of atmospheric pressure plasma treatment of thin water films by a dielectric barrier discharge (DBD) sustained in different gases (Ar, He, air, N2, O2). The densities of reactive species in the plasma activated water (PAW) are evaluated. The resi-dence time of the water in contact with the plasma is increased by recirculating the PAW in plasma reactor. Longer lived species such as H2O2aq and NO3−aq accumulate over time (aq de-notes an aqueous species). DBDs sustained in Ar and He are the most efficient at producing H2O2aq, DBDs sustained in argon produces the largest density of NO3−aq with the lowest pH, and discharges sustained in O2 and air produce the highest densities of O3aq. Comparisons to experi-ments by others show agreement in the trends in densities in PAW including O3aq, OHaq, H2O2aq and NO3−aq, and highlight the importance of controlling desolvation of species from the activated water.  more » « less
Award ID(s):
1902878
PAR ID:
10175604
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
ISSN:
0022-3727
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plasmas in contact with liquids can degrade organic molecules in a solution, as reactive oxygen and nitrogen species produced in the plasma solvate into the liquid. Immersing small droplets (tens of microns in diameter) in the plasma can more rapidly activate the liquid compared to treating a large volume of liquid with a smaller surface-to-volume ratio. The interactions between a radio frequency glow discharge sustained in He/H2O and a water droplet containing formate (HCOOaq) immersed in and flowing through the plasma were modeled using a zero-dimensional global plasma chemistry model to investigate these activation processes. HCOOaqinteracts with OHaq, which is produced from the solvation of OH from the gas phase. The resulting HCOOaqconcentrations were benchmarked with previously reported experimental measurements. The diameter of the droplet, initial HCOOaqconcentration, and gas flow rate affect only the HCOOaqconcentration and OHaqdensity, leaving the OH density in the gas phase unaffected. Power deposition and gas mixture (e.g. percentage of H2O) change both the gas and liquid phase chemistry. A general trend was observed: during the first portion of droplet exposure to the plasma, OHaqprimarily consumes HCOOaq. However, O2aq, a byproduct of HCOOaqconsumption, consumes OHaqonce O2aqreaches a critically large density. Using HCOOaqas a surrogate for OHaq-sensitive contaminants, combinations of residence time, droplet diameter, water vapor density, and power will determine the optimum remediation strategy. 
    more » « less
  2. Electronegative inductively coupled plasmas (ICPs) are used for conductor etching in the microelectronics industry for semiconductor fabrication. Pulsing of the antenna power and bias voltages provides additional control for optimizing plasma–surface interactions. However, pulsed ICPs are susceptible to capacitive-to-inductive mode transitions at the onset of the power pulse due to there being low electron densities at the end of the prior afterglow. The capacitive (E) to inductive (H) mode transition is sensitive to the spatial configuration of the plasma at the end of the prior afterglow, circuit (matchbox) settings, operating conditions, and reactor configurations, including antenna geometry. In this paper, we discuss results from a computational investigation of E–H transitions in pulsed ICPs sustained in Ar/Cl2 and Ar/O2 gas mixtures while varying operating conditions, including gas mixture, pulse repetition frequency, duty cycle of the power pulse, and antenna geometry. Pulsed ICPs sustained in Ar/Cl2 mixtures are prone to significant E–H transitions due to thermal dissociative attachment reactions with Cl2 during the afterglow which reduce pre-pulse electron densities. These abrupt E–H transitions launch electrostatic waves from the formation of a sheath at the boundaries of the plasma and under the antenna in particular. The smoother E–H transitions observed for Ar/O2 mixture results from the higher electron density at the start of the power pulse due to the lack of thermal electron attaching reactions to O2. Ion energy and angular distributions (IEADs) incident onto the wafer and the dielectric window under the antenna are discussed. The shape of the antenna influences the severity of the E–H transition and the IEADs, with antennas having larger surface areas facing the plasma producing larger capacitive coupling. Validation of the model is performed by comparison of computed electron densities with experimental measurements. 
    more » « less
  3. Reforming of methane (CH4) is a process to produce syngas (CO/H2) and other value-added chemicals including oxygenates such as methanol (CH3OH). Atmospheric pressure plasmas have the potential to be more energy efficient than traditional reforming methods as value-added chemicals can be synthesized directly in the plasma without requiring an additional step. In this paper, we discuss the results from a computational investigation of the formation of oxygenates by CH4 oxidation in the presence of Ar, including CH3OH and CH2O, in a nanosecond pulsed dielectric barrier discharge. The plasma is formed in a microfluidic channel whose small dimensions are ideal for plasma formation at atmospheric pressure. The production and consumption mechanisms of dominant radicals and long-lived species are discussed in detail for the base case conditions of Ar/CH4/O2 = 50/25/25. CH3OH is produced primarily by CH3O reacting with CH3O and CH3O2 reacting with OH, while CH2O formation relies on reactions involving CH3O and CH3. The most abundant oxygenate formed is CO (produced by H abstraction from CHO). However, the greenhouse gas CO2 is also formed as a by-product. The effects of gas mixture are examined to maximize the CH3OH and CH2O densities while decreasing the CO2 density. Increasing the Ar percentage from 0% to 95% decreased the CH3OH and CH2O densities. At low Ar percentages, this is due to an increase in consumption of CH3OH and CH2O, while at high Ar percentages (>40% Ar), the production of CH3OH and CH2O is decreased. However, both CO and CO2 reached peak densities at 70%–90% Ar. Changing the CH4/O2 ratio while keeping 50% Ar in the discharge led to increased CH3OH and CH2O production, reaching peak densities at 35%–40% CH4. The CO and CO2 densities decreased beyond 20% CH4, indicating that a CH4 rich discharge is ideal for forming the desired oxygenates. 
    more » « less
  4. Abstract Plasmas interacting with liquid microdroplets are gaining momentum due to their ability to significantly enhance the reactivity transfer from the gas phase plasma to the liquid. This is, for example, critically important for efficiently decomposing organic pollutants in water. In this contribution, the role of ⋅ OH as well as non- ⋅ OH-driven chemistry initiated by the activation of small water microdroplets in a controlled environment by diffuse RF glow discharge in He with different gas admixtures (Ar, O 2 and humidified He) at atmospheric pressure is quantified. The effect of short-lived radicals such as O ⋅ and H ⋅ atoms, singlet delta oxygen (O 2 ( a 1 Δ g )), O 3 and metastable atoms of He and Ar, besides ⋅ OH radicals, on the decomposition of formate dissolved in droplets was analyzed using detailed plasma diagnostics, droplet characterization and ex situ chemical analysis of the treated droplets. The formate decomposition increased with increasing droplet residence time in the plasma, with ∼70% decomposition occurring within ∼15 ms of the plasma treatment time. The formate oxidation in the droplets is shown to be limited by the gas phase ⋅ OH flux at lower H 2 O concentrations with a significant enhancement in the formate decomposition at the lowest water concentration, attributed to e − /ion-induced reactions. However, the oxidation is diffusion limited in the liquid phase at higher gaseous ⋅ OH concentrations. The formate decomposition in He/O 2 plasma was similar, although with an order of magnitude higher O ⋅ radical density than the ⋅ OH density in the corresponding He/H 2 O plasma. Using a one-dimensional reaction–diffusion model, we showed that O 2 ( a 1 Δ g ) and O 3 did not play a significant role and the decomposition was due to O ⋅ , and possibly ⋅ OH generated in the vapor containing droplet-plasma boundary layer. 
    more » « less
  5. Recent observations of plasma-activated water (PAW)’s surfactant behavior suggest that the activation of water with non-equilibrium plasma can decrease the surface tension of the water. This suggested change to the surface tension also indicates that the addition of plasma can lead to changes in the physical properties of the water, knowledge of which can expand existing PAW applications and open new ones. While the chemical behavior of PAW has been extensively analyzed, to the best of our knowledge the physical properties of PAW have not been investigated. This study focuses on the need for experimental determination of PAW’s physical properties—namely, surface tension, viscosity, and contact angle. The experimental results of this study show that the addition of plasma lowers the surface tension of water at room temperature, increases the viscosity of water at high temperatures, and lowers the contact angle of droplets on glass surfaces at room temperatures. Potential factors influencing these changes include plasma alteration of the mesoscopic structure of water at low temperatures and plasma additives acting as foreign particles in water at higher temperatures. Ultimately, this investigation demonstrates that the physical properties of water change due to plasma activation, which could lead to potential industrial applications of PAW as a surfactant or as a washing-out and cleaning agent. 
    more » « less