skip to main content


Search for: All records

Award ID contains: 1902878

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Charging of particles having diameters of tens of microns has been extensively studied at atmospheric pressure in the context of, for example, electrostatic precipitators where the focus was on unipolar charging. The ambipolar charging of particles in atmospheric pressure plasmas, and of droplets in particular, has received less attention. The plasma activation of droplets is of interest for water purification, fertilizer production and materials synthesis, all of which depend on the transport of the droplets through the plasma, which in turn depends on their charging. In this paper, we report on the transport dynamics of water droplets, tens of microns in diameter, carried by the gas flow through an atmospheric pressure radiofrequency glow discharge sustained in helium. The droplets pass through the plasma with minimal evaporation and without reaching the Rayleigh limit. The droplet trajectory in the presence and absence of the plasma provides insights on the forces acting on the droplet. The measurements were analyzed using results from a three-dimensional fluid model and a two-dimensional plasma hydrodynamics model. We found that the transport dynamics as the droplet enters and leaves the plasma are due to differential charging of the droplet in the plasma gradients of the bounding sheaths to the plasma.

     
    more » « less
  2. Abstract

    Plasmas in contact with liquids can degrade organic molecules in a solution, as reactive oxygen and nitrogen species produced in the plasma solvate into the liquid. Immersing small droplets (tens of microns in diameter) in the plasma can more rapidly activate the liquid compared to treating a large volume of liquid with a smaller surface-to-volume ratio. The interactions between a radio frequency glow discharge sustained in He/H2O and a water droplet containing formate (HCOOaq) immersed in and flowing through the plasma were modeled using a zero-dimensional global plasma chemistry model to investigate these activation processes. HCOOaqinteracts with OHaq, which is produced from the solvation of OH from the gas phase. The resulting HCOOaqconcentrations were benchmarked with previously reported experimental measurements. The diameter of the droplet, initial HCOOaqconcentration, and gas flow rate affect only the HCOOaqconcentration and OHaqdensity, leaving the OH density in the gas phase unaffected. Power deposition and gas mixture (e.g. percentage of H2O) change both the gas and liquid phase chemistry. A general trend was observed: during the first portion of droplet exposure to the plasma, OHaqprimarily consumes HCOOaq. However, O2aq, a byproduct of HCOOaqconsumption, consumes OHaqonce O2aqreaches a critically large density. Using HCOOaqas a surrogate for OHaq-sensitive contaminants, combinations of residence time, droplet diameter, water vapor density, and power will determine the optimum remediation strategy.

     
    more » « less
  3. Abstract

    The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability, and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has the goal of improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations.

     
    more » « less
  4. Abstract

    The ignition of plasmas in liquids has applications from medical instrumentation to manipulation of liquid chemistry. Formation of plasmas directly in a liquid often requires prohibitively large voltages to initiate breakdown. Producing plasma streamers in bubbles submerged in a liquid with higher permittivity can significantly lower the voltage needed to initiate a discharge by reducing the electric field required to produce breakdown. The proximity of the bubble to the electrodes and the shape of the bubbles play critical roles in the manner in which the plasma is produced in, and propagates through, the bubble. In this paper, we discuss results from a three-dimensional direct numerical simulation (DNS) used to investigate the shapes of bubbles formed by injection of air into water. Comparisons are made to results from a companion experiment. A two-dimensional plasma hydrodynamics model was then used to capture the plasma streamer propagation in the bubble using a static bubble geometry generated by the DNS The simulations showed two different modes for streamer formation depending on the bubble shape. In an elliptical bubble, a short electron avalanche triggered a surface ionization wave (SIWs) resulting in plasma propagating along the surface of the bubble. In a circular bubble, an electron avalanche first traveled through the middle of the bubble before two SIWs began to propagate from the point closest to the grounded electrode where a volumetric streamer intersected the surface. In an elliptical bubble approaching a powered electrode in a pin-to-pin configuration, we experimentally observed streamer behavior that qualitatively corresponds with computational results. Optical emission captured over the lifetime of the streamer curve along the path of deformed bubbles, suggesting propagation of the streamer along the liquid/gas boundary interface. Plasma generation supported by the local field enhancement of the deformed bubble surface boundaries is a mechanism that is likely responsible for initiating streamer formation.

     
    more » « less
  5. In plasma-driven solution electrolysis (PDSE), gas-phase plasma-produced species interact with an electrolytic solution to produce, for example, nanoparticles. An atmospheric pressure plasma jet (APPJ) directed onto a liquid solution containing a metallic salt will promote reduction of metallic ions in solution, generating metallic clusters that nucleate to form nanoparticles. In this article, results from a computational investigation are discussed of a PDSE process in which a radio-frequency APPJ sustained in helium impinges on a silver nitrate solution, resulting in growth of silver nanoparticles. A reaction mechanism was developed and implemented in a global plasma chemistry model to predict nanoparticle growth. To develop the reaction mechanism, density functional theory was used to generate probable silver growth pathways up to Ag 9 . Neutral clusters larger than Ag 9 were classified as nanoparticles. Kinetic reaction rate coefficients for thermodynamically favorable growth pathways were estimated based on an existing, empirically determined base reaction mechanism for smaller Ag particle interactions. These rates were used in conjunction with diffusion-controlled reaction rate coefficients that were calculated for other Ag species. The role of anions in reduction of Ag n ions in forming nanoparticles is also discussed. Oxygen containing impurities or admixtures to the helium, air entrainment into the APPJ, and dissociation of saturated water vapor above the solution can produce additional reactive oxygen species in solution, resulting in the production of anions and [Formula: see text] in particular. For a given molarity, delivering a sufficient fluence of reducing species will produce similar nanoparticle densities and sizes for all applied power levels. Comparisons are made to alternate models for nanoparticle formation, including charged nanoparticles and use of direct current plasmas. 
    more » « less
  6. Abstract Silver nanoparticles (NPs) are extensively used in electronic components, chemical sensors, and disinfection applications, in which many of their properties depend on particle size. However, control over silver NP size and morphology still remains a challenge for many synthesis techniques. In this work, we demonstrate the surfactant-free synthesis of silver NPs using a low-pressure inductively coupled nonthermal argon plasma. Continuously forming droplets of silver nitrate (AgNO 3 ) precursor dissolved in glycerol are exposed to the plasma, with the droplet residence time being determined by the precursor flow rate. Glycerol has rarely been studied in plasma-liquid interactions but shows favorable properties for controlled NP synthesis at low pressure. We show that the droplet residence time and plasma power have strong influence on NP properties, and that improved size control and particle monodispersity can be achieved by pulsed power operation. Silver NPs had mean diameters of 20 nm with geometric standard deviations of 1.6 under continuous wave operation, which decreased to 6 nm mean and 1.3 geometric standard deviation for pulsed power operation at 100 Hz and 20% duty cycle. We propose that solvated electrons from the plasma and vacuum ultraviolet (VUV) radiation induced electrons produced in glycerol are the main reducing agents of Ag + , the precursor for NPs, while no significant change of chemical composition of the glycerol solvent was detected. 
    more » « less
  7. Abstract Atmospheric pressure plasmas intersecting with dielectric surfaces will often transition into surface ionization waves (SIWs). Several applications of these discharges are purposely configured to be SIWs. During propagation of an SIW over a dielectric surface, the plasma charges the surface while responding to changes in geometrical and electrical material properties. This is particularly important for non-planar surfaces where polarization of the dielectric results in local electric field enhancement. In this paper, we discuss results from computational investigations of negative and positive SIWs propagating over nonplanar dielectrics in three configurations—wavy surfaces, cuts through porous materials and water droplets on flat surfaces. We found that negative SIWs are particularly sensitive to the electric field enhancement that occurs at the crests of non-planar surfaces. The local increase in ionization rates by the electric field enhancement can result in the SIW detaching from the surface, which produces non-uniform plasma exposure of the surface. Positive SIWs tend to adhere to the surface to a greater degree. These trends indicate that treatment of pathogen containing droplets on surfaces may be best performed by positive SIWs. The same principles apply to the surfaces cut through pores. Buried pores with small openings to the SIW may be filled by plasma by either flow of plasma into the pore (large opening) or initiated by photoionization (small opening), depending on the size of the opening compared to the Debye length. 
    more » « less
  8. Interactions at the interface between atmospheric pressure plasmas and liquids are being investigated to address applications ranging from nanoparticle synthesis to decontamination and fertilizer production. Many of these applications involve activation of droplets wherein the droplet is fully immersed in the plasma and synergistically interacts with the plasma. To better understand these interactions, two-dimensional modeling of radio frequency (RF) glow discharges at atmospheric pressure operated in He with an embedded lossy dielectric droplet (tens of microns in size) was performed. The properties of the sheath that forms around the droplet were investigated over the RF cycle. The electric field in the bulk plasma polarizes the dielectric droplet while the electron drift in the external electric field is shadowed by the droplet. The interaction between the bulk and sheath electric fields produces a maximum in E/N (electric field/gas number density) at the equator on one side of the droplet where the bulk and sheath fields are aligned in the same direction and a minimum along the opposite equator. Due to resistive heating, the electron temperature T e is maximum 45° above and below the equator of the droplet where power deposition per electron is the highest. Although the droplet is, on the average, negatively charged, the charge density on the droplet is positive on the poles and negative on the equator, as the electron motion is primarily due to diffusion at the poles but due to drift at the equator. 
    more » « less
  9. Abstract The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by Journal of Physics D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years. 
    more » « less
  10. Atmospheric pressure plasma jets (APPJs) are used to improve the adhesive and hydrophilic properties of commodity hydrocarbon polymers such as polypropylene, polyethylene, and polystyrene (PS). These improvements largely result from adding oxygen functional groups to the surface. PS functionalization is of interest to produce high value biocompatible well-plates and dishes, which require precise control over surface properties. In this paper, we discuss results from a computational investigation of APPJ functionalization of PS surfaces using He/O 2 /H 2 O gas mixtures. A newly developed surface reaction mechanism for functionalization of PS upon exposure to these plasmas is discussed. A global plasma model operated in plug-flow mode was used to predict plasma-produced species fluxes onto the PS surface. A surface site balance model was used to predict oxygen-functionalization of the PS following exposure to the plasma and ambient air. We found that O-occupancy on the surface strongly correlates with the O-atom flux to the PS, with alcohol groups and cross-linked products making the largest contributors to total oxygen fraction. Free radical sites, such as alkoxy and peroxy, are quickly consumed in the post-plasma exposure to air through passivation and cross-linking. O-atom fluences approaching 10 17  cm −2 saturate the O-occupancy on the PS surface, creating functionality that is not particularly sensitive to moderate changes in operating conditions. 
    more » « less