Cite: Abulfaz Hajizada and Sharmin Jahan. 2023. Feature Selections for Phishing URLs Detection Using Combination of Multiple Feature Selection Methods. In 2023 15th International Conference on Machine Learning and Computing (ICMLC 2023), February 17–20, 2023, Zhuhai, China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3587716.3587790 ABSTRACT In this internet era, we are very prone to fall under phishing attacks where attackers apply social engineering to persuade and manipulate the user. The core attack target is to steal users’ sensitive information or install malicious software to get control over users’ devices. Attackers use different approaches to persuade the user. However, one of the common approaches is sending a phishing URL to the user that looks legitimate and difficult to distinguish. Machine learning is a prominent approach used for phishing URLs detection. There are already some established machine learning models available for this purpose. However, the model’s performance depends on the appropriate selection of features during model building. In this paper, we combine multiple filter methods for feature selections in a procedural way that allows us to reduce a large number of feature list into a reduced number of the feature list. Then we finally apply the wrapper method to select the features for building our phishing detection model. The result shows that combining multiple feature selection methods improves the model’s detection accuracy. Moreover, since we apply the backward feature selection method as our wrapper method on the data set with a reduced number of features, the computational time for backward feature selection gets faster.
more »
« less
Visualizing and Interpreting RNN Models in URL-based Phishing Detection
Existing studies have demonstrated that using traditional machine learning techniques, phishing detection simply based on the features of URLs can be very effective. In this paper, we explore the deep learning approach and build four RNN (Recurrent Neural Network) models that only use lexical features of URLs for detecting phishing attacks. We collect 1.5 million URLs as the dataset and show that our RNN models can achieve a higher than 99% detection accuracy without the need of any expert knowledge to manually identify the features. However, it is well known that RNNs and other deep learning techniques are still largely in black boxes. Understanding the internals of deep learning models is important and highly desirable to the improvement and proper application of the models. Therefore, in this work, we further develop several unique visualization techniques to intensively interpret how RNN models work internally in achieving the outstanding phishing detection performance. Especially, we identify and answer six important research questions, showing that our four RNN models (1) are complementary to each other and can be combined into an ensemble model with even better accuracy, (2) can well capture the relevant features that were manually extracted and used in the traditional machine learning approach for phishing detection, and (3) can help identify useful new features to enhance the accuracy of the traditional machine learning approach. Our techniques and experience in this work could be helpful for researchers to effectively apply deep learning techniques in addressing other real-world security or privacy problems.
more »
« less
- Award ID(s):
- 1936968
- PAR ID:
- 10175645
- Date Published:
- Journal Name:
- ACM Symposium on Access Control Models and Technologies
- Page Range / eLocation ID:
- 13 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Phishing websites remain a persistent security threat. Thus far, machine learning approaches appear to have the best potential as defenses. But, there are two main concerns with existing machine learning approaches for phishing detection. The first is the large number of training features used and the lack of validating arguments for these feature choices. The second concern is the type of datasets used in the literature that are inadvertently biased with respect to the features based on the website URL or content. To address these concerns, we put forward the intuition that the domain name of phishing websites is the tell-tale sign of phishing and holds the key to successful phishing detection. Accordingly, we design features that model the relationships, visual as well as statistical, of the domain name to the key elements of a phishing website, which are used to snare the end-users. The main value of our feature design is that, to bypass detection, an attacker will find it very difficult to tamper with the visual content of the phishing website without arousing the suspicion of the end user. Our feature set ensures that there is minimal or no bias with respect to a dataset. Our learning model trains with only seven features and achieves a true positive rate of 98% and a classification accuracy of 97%, on sample dataset. Compared to the state-of-the-art work, our per data instance classification is 4 times faster for legitimate websites and 10 times faster for phishing websites. Importantly, we demonstrate the shortcomings of using features based on URLs as they are likely to be biased towards specific datasets. We show the robustness of our learning algorithm by testing on unknown live phishing URLs and achieve a high detection accuracy of 99.7%.more » « less
-
Cyber attacks continue to pose significant threats to individuals and organizations, stealing sensitive data such as personally identifiable information, financial information, and login credentials. Hence, detecting malicious websites before they cause any harm is critical to preventing fraud and monetary loss. To address the increasing number of phishing attacks, protective mechanisms must be highly responsive, adaptive, and scalable. Fortunately, advances in the field of machine learning, coupled with access to vast amounts of data, have led to the adoption of various deep learning models for timely detection of these cyber crimes. This study focuses on the detection of phishing websites using deep learning models such as Multi-Head Attention, Temporal Convolutional Network (TCN), BI-LSTM, and LSTM where URLs of the phishing websites are treated as a sequence. The results demonstrate that Multi-Head Attention and BI-LSTM model outperform some other deep learning-based algorithms such as TCN and LSTM in producing better precision, recall, and F1-scores.more » « less
-
null (Ed.)Phishing websites trick honest users into believing that they interact with a legitimate website and capture sensitive information, such as user names, passwords, credit card numbers, and other personal information. Machine learning is a promising technique to distinguish between phishing and legitimate websites. However, machine learning approaches are susceptible to adversarial learning attacks where a phishing sample can bypass classifiers. Our experiments on publicly available datasets reveal that the phishing detection mechanisms are vulnerable to adversarial learning attacks. We investigate the robustness of machine learning-based phishing detection in the face of adversarial learning attacks. We propose a practical approach to simulate such attacks by generating adversarial samples through direct feature manipulation. To enhance the sample’s success probability, we describe a clustering approach that guides an attacker to select the best possible phishing samples that can bypass the classifier by appearing as legitimate samples. We define the notion of vulnerability level for each dataset that measures the number of features that can be manipulated and the cost for such manipulation. Further, we clustered phishing samples and showed that some clusters of samples are more likely to exhibit higher vulnerability levels than others. This helps an adversary identify the best candidates of phishing samples to generate adversarial samples at a lower cost. Our finding can be used to refine the dataset and develop better learning models to compensate for the weak samples in the training dataset.more » « less
-
null (Ed.)Phishing is a serious challenge that remains largely unsolved despite the efforts of many researchers. In this paper, we present datasets and tools to help phishing researchers. First, we describe our efforts on creating high quality, diverse and representative email and URL/website datasets for phishing and making them publicly available. Second, we describe PhishBench, a benchmarking framework, which automates the extraction of more than 200 features, implements more than 30 classifiers, and 12 evaluation metrics, for detection of phishing emails, websites and URLs. Using PhishBench, the research community can easily run their models and benchmark their work against the work of others, who have used common dataset sources for emails (Nazario, SpamAssassin, WikiLeaks, etc.) and URLs (PhishTank, APWG, Alexa, etc.).more » « less
An official website of the United States government

