skip to main content


Title: CSB-RNN: a faster-than-realtime RNN acceleration framework with compressed structured blocks
Award ID(s):
1909172 1937500 1919130 1919117
NSF-PAR ID:
10175905
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 34th ACM International Conference on Supercomputing
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We address the problem of end-to-end visual storytelling. Given a photo album, our model first selects the most representative (summary) photos, and then composes a natural language story for the album. For this task, we make use of the Visual Storytelling dataset and a model composed of three hierarchically-attentive Recurrent Neural Nets (RNNs) to: encode the album photos, select representative (summary) photos, and compose the story. Automatic and human evaluations show our model achieves better performance on selection, generation, and retrieval than baselines. 
    more » « less
  2. RNN Tranducer (RNN-T) technology is very popular for building deployable models for end-to-end (E2E) automatic speech recognition (ASR) and spoken language understanding (SLU). Since these are E2E models operating on speech directly, there remains a potential to improve their performance using purely text based models like BERT, which have strong language understanding capabilities. In this paper, we propose a new training criteria for RNN-T based E2E ASR and SLU to transfer BERT’s knowledge into these systems. In the first stage of our proposed mechanism, we improve ASR performance by using a fine-grained, tokenwise knowledge transfer from BERT. In the second stage, we fine-tune the ASR model for SLU such that the above knowledge is explicitly utilized by the RNN-T model for improved performance. Our techniques improve ASR performance on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation and on the recently released SLURP dataset on which we achieve a new state-of-the-art performance. For SLU, we show significant improvements on the SLURP slot filling task, outperforming HuBERT-base and reaching a performance close to HuBERTlarge. Compared to large transformer based speech models like HuBERT, our model is significantly more compact and uses only 300 hours of speech pretraining data. 
    more » « less
  3. null (Ed.)