skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding second grader’s computational thinking skills in robotics through their individual traits
Purpose This study aims to investigate the relationship between the personal traits and computational thinking skills of second graders within the context of robotics activities. Design/methodology/approach Through literature review, a research model and hypotheses were tested with 122 second graders after robotic activities. Findings The hypothesized model showed that learning preference, intrinsic motivation and self-efficacy were the main predictors of coding achievement and computational thinking skills, while no direct relationship was found between learning preference, intrinsic or extrinsic motivation. The final path analysis revealed that intrinsic and extrinsic motivation predict self-efficacy, self-efficacy predicts coding achievement and coding achievement predicts computational thinking skills. Another important finding was the strong impact of self-efficacy on coding achievement, as well as computational thinking skills. Results are interpreted with reference to implications for potential methods of improving computational thinking skills when using robotics in the lower grades in elementary schools. Research limitations/implications This study not only examined these relationships but also proposed, tested and built a research model containing a wide range of personal traits based on path analysis and multiple regression analysis, which, to the best of the researchers’ knowledge, has not been investigated in the current literature. Practical implications As reflected in the final research model, self-efficacy played an important role in impacting second grader’s coding achievement and computational thinking skills. Originality/value Few studies have investigated the various relationships in the context of robotics instruction in elementary schools as in this study. Given the increasing popularity of robotics education in elementary schools, the re-examination and identification of the pivotal role of self-efficacy in predicting second graders’ learning of coding and computational thinking skills have important implications for the implementation of robotics education.  more » « less
Award ID(s):
1640228
PAR ID:
10176073
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Information Discovery and Delivery
Volume:
47
Issue:
4
ISSN:
2398-6247
Page Range / eLocation ID:
218 to 228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As a result of the increased inclusion of engineering and computer science standards for K-6 schools nationwide, there is a need to better understand how teacher educators can help develop preservice teachers’ (PSTs’) teaching self-efficacy in these areas. Ed+gineering provides novel opportunities for PSTs to experience teaching and learning engineering and coding content by building COVID-companion robots. Growing evidence supports robotics as a powerful approach to STEM learning for PSTs. In this study, Ed+gineering examined three cases to explore this overarching question: In what ways did PSTs’ virtual robotics project experience develop their self-efficacy for teaching engineering and coding? Three PST cases were examined, within the context of their work with other team members (i.e., undergraduate engineering student(s), 5th graders). To understand each of three PSTs’ virtual robotics project experiences, multiple data sources were collected and analyzed which includes mid- and post-semester CATME, end of course short-answer reflections, follow up interviews (including a modified Big Five personality inventory), and Zoom session recordings. Elementary PSTs Brenda, Erica, and Sarah experienced various levels of commitment and engagement in their five Zoom sessions. These factors, along with other personal and external influences, contributed to Bandura’s four identified sources of self-efficacy. This study examines these contributing factors to create an initial working model of how PSTs develop teaching self-efficacy. In this conference session, science teacher educators will learn more about this model and pedagogical decisions that seemed to influence PST’s self-efficacy for teaching engineering and computer science. 
    more » « less
  2. Abstract Due to mandates for the inclusion of engineering and computer science standards for K-6 schools nationwide, there is a need to understand how teacher educators can help develop preservice teachers’ (PSTs’) teaching self-efficacy in these areas. To provide experience teaching and learning engineering and coding, PSTs in an instructional technology course were partnered with undergraduate engineering students in an electromechanical systems course to teach robotics lessons to fifth graders (10–11 year olds) over Zoom. A multi-case study approach explored teaching self-efficacy development for three preservice teachers during their robotics project experiences using multiple data sources, including surveys, reflections, interviews, and Zoom recordings, which were examined to identify how the project's social and intrapersonal context influenced the development of each PST’s teaching self-efficacy for engineering and coding. The PSTs gained teaching self-efficacy through all four sources of teaching self-efficacy, although not all PSTs benefited from all four types, nor did they benefit equally. These sources also influenced the PSTs’ intention to integrate engineering and coding into their future classrooms. This study demonstrates the potential of providing PSTs with the opportunity to teach robotics to children during their teacher preparation programs to support the development of their teaching self-efficacy for engineering and coding. When conducted in the context of a college course, such opportunities can be thoughtfully structured to leverage positive interactions with peers and elementary students and to take advantage of low-stakes environments, like afterschool clubs, offering PSTs settings rich in sources of self-efficacy information. 
    more » « less
  3. In this presentation, the research team discussed elementary schoolers’ experiences in their early exposure to robotics and programming. As a part of a National Science Foundation (NSF-1741910)-funded project, the data were collected of 4th-5th graders engaged in coding tasks at three different elementary schools from the same school district. The preliminary results showed that the students extensively worked on their construction of the unit of measure a programming language of a robot adapts. In addition, the way that the students used the classroom space and materials mediated their understanding of robotics and coding. Understanding the activity system that leads to particular actions in students’ construction of robotics and coding was important to this project’s research activities. Anticipated outcomes likely will lead to more studies exploring the interplay between different elements in the activity system of coding and robotics integration in elementary classrooms 
    more » « less
  4. Abstract: Nationwide K–6 engineering and coding standards have made it increasingly important to prepare elementary preservice teachers (PSTs) to teach these subjects confidently and effectively. Robotics, which combines coding and engineering, provides a rich context for developing PSTs’ expertise and self-efficacy. This study builds on prior work in which PSTs in an instructional technology course collaborated with undergraduate engineering students to co-teach robotics lessons to fifth graders. Using a multiple-embedded case study approach, we examine how the interactions and teaching roles within these partnerships influenced PSTs’ teaching self-efficacy. Drawing on reflections, lesson recordings, surveys, and interviews, we present the cases of three PSTs—Lisa, Madison, and Kayla—who experienced varying levels of partner support and student engagement. Lisa and Madison were both compelled to lead robotics instruction due to perceived lack of support from their engineering partners, yet they experienced contrasting outcomes: Lisa struggled with disengaged students and malfunctioning robots, which diminished her self-efficacy, while Madison's success with highly engaged students bolstered hers. Kayla, in contrast, developed self-efficacy over time through a productive partnership with a supportive engineering student. These cases highlight the complex relationship between partner dynamics, teaching roles, perceived success, and self-efficacy development. Implications for supporting PSTs in engineering-integrated experiences are discussed. 
    more » « less
  5. Previous research has shown that intellectual humility (IH) could predict important academic outcomes. This study explores the associations between IH, four different types of academic motivation (intrinsic motivation-to know and -to accomplish, extrinsic motivation-external regulation, amotivation) and academic self-efficacy. Undergraduate students (N= 261) from a Hispanic majority institution completed validated measures assessing these variables. Multiple regression showed that IH positively predicted intrinsic motivation-to know and -to accomplish, and academic self-efficacy. Results also showed no association between IH and extrinsic motivation-external regulation and a negative association with amotivation. These findings extend previous research by showing that IH is not only positively linked to a desire to learn for knowledge’s sake, but also to the process of learning. They suggest that intellectual humility could, with further research, be leveraged to enhance students’ intrinsic motivation and academic self-efficacy, thereby contributing to improved academic performance and well-being. 
    more » « less