skip to main content


Title: “This Began My Journey of Confidence in Teaching Engineering on an Elementary Level!”: Three Cases to Examine the Development of Preservice Teacher Self-Efficacy for Teaching Engineering in the Elementary Classroom.
As a result of the increased inclusion of engineering and computer science standards for K-6 schools nationwide, there is a need to better understand how teacher educators can help develop preservice teachers’ (PSTs’) teaching self-efficacy in these areas. Ed+gineering provides novel opportunities for PSTs to experience teaching and learning engineering and coding content by building COVID-companion robots. Growing evidence supports robotics as a powerful approach to STEM learning for PSTs. In this study, Ed+gineering examined three cases to explore this overarching question: In what ways did PSTs’ virtual robotics project experience develop their self-efficacy for teaching engineering and coding? Three PST cases were examined, within the context of their work with other team members (i.e., undergraduate engineering student(s), 5th graders). To understand each of three PSTs’ virtual robotics project experiences, multiple data sources were collected and analyzed which includes mid- and post-semester CATME, end of course short-answer reflections, follow up interviews (including a modified Big Five personality inventory), and Zoom session recordings. Elementary PSTs Brenda, Erica, and Sarah experienced various levels of commitment and engagement in their five Zoom sessions. These factors, along with other personal and external influences, contributed to Bandura’s four identified sources of self-efficacy. This study examines these contributing factors to create an initial working model of how PSTs develop teaching self-efficacy. In this conference session, science teacher educators will learn more about this model and pedagogical decisions that seemed to influence PST’s self-efficacy for teaching engineering and computer science.  more » « less
Award ID(s):
1908743
NSF-PAR ID:
10447512
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of science teacher education
ISSN:
1046-560X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  2. null (Ed.)
    Though elementary educators recognize the importance of integrating engineering in their classrooms, many feel challenged and unprepared to teach engineering content. The absence of effective engineering instruction in teacher preparation programs leaves future educators unprepared for this challenge. Ed+gineering is an NSF-funded partnership between education and engineering aimed at increasing preservice teacher (PST) preparation, confidence, and intention to integrate engineering into their teaching. Ed+gineering partners education and engineering students in multidisciplinary teams within the context of their respective university courses. As part of their coursework, the teams plan and deliver culturally responsive engineering lessons to elementary school students under the guidance of one engineering and one education faculty. This paper investigates the impact of Ed+gineering on PSTs’ knowledge of engineering practices, engineering pedagogical knowledge, self-efficacy to integrate engineering, and beliefs about engineering integration. The impact of Ed+gineering on participating PSTs was assessed using three collaborations involving students in engineering and education during Fall 2019 and Spring 2020. Preliminary results suggest that the Ed+gineering partnership positively impacted engineering-pedagogical knowledge, knowledge of engineering practices, and self efficacy for integrating engineering. The specific magnitude of the impact and its implications are discussed. 
    more » « less
  3. Despite nationwide mandates to integrate computer science into P-6 curriculum, most P-6 preservice teachers (PSTs) are not exposed to coding or computational thinking during their professional preparation, and are unprepared to teach these topics. This study, conducted as a part of an NSF-funded project, explores a teacher preparation model designed to increase PSTs’ coding knowledge and coding self-efficacy. PSTs in an educational technology course partnered with engineering undergraduates (EUs) in a computational methods course and worked side-by-side on robotics activities to develop skill and confidence with basic programming concepts and block coding. Students utilized experience gained from these interdisciplinary partnerships to lead robotics activities with fifth and sixth grade students (FSGs) in an after-school technology club. Findings from quantitative studies suggest that the implementation of the approach resulted in a significant increase in both PSTs’ coding knowledge and coding self-efficacy. Qualitative studies revealed that most PSTs’ and EUs’ perceived value of the project was positive. 
    more » « less
  4. null (Ed.)
    Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction. 
    more » « less
  5. null (Ed.)
    The COVID-19 induced school shutdown dramatically decreased students’ hands-on STEM learning opportunities. An NSF-funded program partnering preservice teachers and undergraduate engineering students to teach robotics to fifth graders was adapted to a virtual format via Zoom. A case study intimately explored one team’s experience as they engineered bio-inspired robots over five weekly sessions. Zoom recordings, written reflections, and lesson slides were analyzed to describe how the virtual context shaped the lesson and influenced the preservice teacher’s experience. All three participants successfully engineered a robotic flower indicating hands-on robotics instruction is feasible in an online format. The virtual context increased the preservice teacher’s responsibilities and sense of autonomy, and appeared to positively influence her knowledge and self-efficacy. Despite technical challenges, positive outcomes suggest the approach is worth repeating. To the authors’ knowledge, this is the first study examining a virtual robotics lesson co-taught by a preservice teacher and an engineering student. 
    more » « less