Abstract Enhancing the resilience and reliability of power grids is crucial amid rising cyber threats and system complexities. To address these challenges, this paper proposes an energy‐efficient, consortium blockchain‐based global alarm system for power grid management. Using smart contracts and the proof of‐authority consensus algorithm, the alarm system triggers global alarms upon detecting local anomalies, ensuring a prompt response to partition the power grid and mitigate failures. The effectiveness is validated by simulating the Iberian power system with 15 providers from various regions. Key metrics, such as load shedding, damage reduction, energy consumption, latency, and transaction costs, are used to assess the performance. Through simulations, we show that the blockchain‐based system effectively limits the damage propagation and the load shedding during cascading failures by delaying the onset of instability and maintaining lower damage levels compared to non‐blockchain scenarios. Our investigations reveal that the proposed global alarm mechanism reduces the damage and load shedding by up to 29% and 87%, respectively, showcasing its potential for preventing widespread outages.
more »
« less
Operating Power Grids during Natural Disasters
Optimal dispatch and network reconfiguration have so far been used effectively to improve power grid reliability and economic operation. This paper presents a linearized optimization formulation of best load shedding and topology control strategies under extreme events such as hurricanes. In addition, the algorithm analyzes voltage stability after each optimization cycle and iteratively tightens the constraints until a stable solution is found. The proposed method relies on the hurricane's trajectory forecast and available fragility curves for civil engineering structures to predict those power grid facilities most likely to be damaged or taken out in the next monitoring period. The developed algorithm also considers the requirements of other interdependent networks such as mobile communication and emergency services to prioritize load shedding for associated load centers
more »
« less
- Award ID(s):
- 1638234
- PAR ID:
- 10176077
- Date Published:
- Journal Name:
- 2019 IEEE Milan PowerTech
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Traditional load shedding schemes can be inadequate in grids with high renewable penetration, leading to unstable events and unnecessary grid islanding. Although for both manual and automatic operating modes load shedding areas have been predefined by grid operators, they have remained fixed, and may be sub-optimal due to dynamic operating conditions. In this work, a distributed tri-level linear programming model for automatic load shedding to avoid system islanding is presented. Preventing islanding is preferred because it reduces the need for additional load shedding besides the disconnection of transmission lines between islands. This is crucial as maintaining the local generation-demand balance is necessary to preserve frequency stability. Furthermore, uneven distribution of generation resources among islands can lead to increased load shedding, causing economic and reliability challenges. This issue is further compounded in modern power systems heavily dependent on non-dispatchable resources like wind and solar. The upper-level model uses complex power flow measurements to determine the system areas to shed load depending on actual operating conditions using a spectral clustering approach. The mid-level model estimates the area system state, while the lower-level model determines the locations and load values to be shed. The solution is practical and promising for real-world applications.more » « less
-
Wildfires pose a growing risk to public safety in regions like the western United States, and, historically, electric power systems have ignited some of the most destructive wildfires. To reduce wildfire ignition risks, power system operators preemptively de-energize high-risk power lines during extreme wildfire conditions as part of "Public Safety Power Shutoff" (PSPS) events. While capable of substantially reducing acute wildfire risks, PSPS events can also result in significant amounts of load shedding as the partially de-energized system may not be able to supply all customer demands. In this work, we investigate the extent to which infrastructure investments can support system operations during PSPS events by enabling reduced load shedding and wildfire ignition risk. We consider the installation of grid-scale batteries, solar PV, and line hardening or maintenance measures (e.g., undergrounding or increased vegetation management). Optimally selecting the locations, types, and sizes of these infrastructure investments requires considering the line de-energizations associated with PSPS events. Accordingly, this paper proposes a multi-period optimization formulation that locates and sizes infrastructure investments while simultaneously choosing line de-energizations to minimize wildfire ignition risk and load shedding. The proposed formulation is evaluated using two geolocated test cases along with realistic infrastructure investment parameters and actual wildfire risk data from the US Geological Survey. We evaluate the performance of investment choices by simulating de-energization decisions for the entire 2021 wildfire season with optimized infrastructure placements. With investment decisions varying significantly for different test cases, budgets, and operator priorities, the numerical results demonstrate the proposed formulation's value in tailoring investment choices to different settings.more » « less
-
Abstract This paper presents the genetic algorithm (GA) and particle swarm optimization (PSO) based frequency regulation for a wind‐based microgrid (MG) using reactive power balance loop. MG, operating from squirrel cage induction generator (SCIG), is employed for exporting the electrical power from wind turbines, and it needs reactive power which may be imported from the grid. Additional reactive power is also required from the grid for the load, directly coupled with such a distributed generator (DG) plant. However, guidelines issued by electric authorities encourage MGs to arrange their own reactive power because such reactive power procurement is defined as a local area problem for power system studies. Despite the higher cost of compensation, static synchronous compensator (STATCOM) is a fast‐acting FACTs device for attending to these reactive power mismatches. Reactive power control can be achieved by controlling reactive current through the STATCOM. This can be achieved with modification in current controller scheme of STATCOM. STATCOM current controller is designed with reactive power load balance for the proposed microgrid in this paper. Further, gain values of the PI controller, required in the STATCOM model, are selected first with classical methods. In this classical method, iterative procedures which are based on integral square error (ISE), integral absolute error (IAE), and integral square of time error (ISTE) criteria are developed using MATLAB programs. System performances are further investigated with GA and PSO based control techniques and their acceptability over classical methods is diagnosed. Results in terms of converter frequency deviation show how the frequency remains under the operating boundaries as allowed by IEEE standards 1159:1995 and 1250:2011 for integrating renewable‐based microgrid with grid. Real and reactive power management and load current total harmonic distortions verify the STATCOM performance in MG. The results are further validated with the help of recent papers in which frequency regulation is investigated for almost similar power system models. The compendium for this work is as following: (i) modelling of wind generator‐based microgrid using MATLAB simulink library, (ii) designing of STATCOM current controller with PI controller, (iii) gain constants estimation using classical, GA and PSO algorithm through a developed m codes and their interfacing with proposed simulink model, (v) dynamic frequency responses for proposed grid connected microgrid during starting and load perturbations, (vi) verification of system performance with the help of obtained real and reactive power management between STATCOM and grid, and (vii) validation of results with available literature.more » « less
-
Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions --- equivalent to a drop of 23.3% in our electric grid emissions.more » « less
An official website of the United States government

