Security is a well-known function to any transmission operator and system planner. As the world is moving toward the decarbonization of the power industry, it is more complicated for the system operators to maintain an acceptable level of security in the power system operation. More large-scale wind farms are being incorporated into the grid, and thus, the voltage stability concern is increasing. In practice, several contingencies are imagined by the system operators to assess the reliability of the grid. Since voltage stability is one of the major menaces that can trigger voltage instability in a power system, this paper is attempting to present to the transmission system planners and operators a dedicated methodology to facilitate the incorporation of large-scale wind farms into a transmission grid under high penetration of wind power. the stability of a wind-dominated power system is discussed based on Q-V and P-V methodologies and some N-1 contingencies with the Remedial Action Schemes (RAS). Furthermore, a methodology to rank the worst contingencies and to predict the voltage collapse during the highest wind penetration level is presented. Simulations have been, extensively, carried out to examine the methodology and have provided valuable information about the static security of the wind-dominated power system. The results can be used by the transmission system operator to anticipate voltage instability or voltage collapse in the power system during high wind penetration levels.
more »
« less
Voltage Stability Based Placement of Distributed Generation Against Extreme Events
This paper is concerned about improving the resilience of power grids against extreme events which may lead to the line and generator outages and subsequent voltage stability problems and blackouts. The reported study investigates ways of eliminating or substantially reducing the chances of having such voltage stability problems during expected extreme events, by strategically placing a few distributed generators in the system. The problem is addressed in two stages, where a reasonably inclusive list of credible contingencies are individually considered first. A minimum number of distributed generators are selected and placed in order to maintain voltage stability under each considered contingency. In the second stage, the number of generators is minimized by the strategic selection of locations to reach a solution that ensures voltage stability under all considered contingencies in the system. Effectiveness and computational performance of the developed strategy are illustrated by simulating several outage scenarios using the IEEE 118-bus system.
more »
« less
- Award ID(s):
- 1638234
- PAR ID:
- 10176160
- Date Published:
- Journal Name:
- 2020 Power Systems Computation Conference (PSCC)
- Page Range / eLocation ID:
- 1-7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a 17-bus 500 kV test system for transmission expansion planning (TEP) studies. An actual 500 kV transmission line geometry was used for the overhead lines of this system. Although many test systems have been introduced for different types of power system analysis, those especially for TEP studies at a transmission voltage level, not distribution voltage level, are few. To the best of our knowledge, the introduced test systems for TEP studies, either those combined with electricity market problems or those used to connect a new load or generation to an existing power grid, consider the studies under only normal condition. However, for TEP studies it is needed that a test system meets voltage drop and line loading limits criteria under normal condition as well as all single contingencies, and in this regard, addressing the latter, all single contingencies, is challenging. This paper addresses this technical gap, introducing a 17-bus test system at a transmission voltage level, 500 kV, that meets requirements under normal condition as well as all single contingencies. In addition to presenting all details of this new test system, load flow results under normal condition as well as the worst single contigency are presented. For studies on the TEP, this test system can be an invaluable resource.more » « less
-
null (Ed.)Economic Dispatch aims to minimize the total cost of operation/generation of microgrids while meeting all the defined constraints. Since microgrids consist of distributed generators, it is imperative for these generators to communicate seamlessly with each other without any losses and to ensure secure operation of the microgrid. With the use of distributed generators, noise is inherent in the system. This paper focuses on including noises as a constraint in an islanded microgrid to find a better economic dispatch solution. It also introduces a STATCOM controller for reactive power management. The controller will help provide stability to the microgrid's voltage, output power and phase angle. This will enhance the microgrid's performance and make it a more resilient system.more » « less
-
Natural disasters has been causing an increasing amount of economic losses in the past two decades. Natural disasters, such as hurricanes, winter storms, and wildfires, can cause severe damages to power systems, significantly impacting industrial, commercial, and residential activities, leading to not only economic losses but also inconveniences to people’s day-today life. Improving the resilience of power systems can lead to a reduced number of power outages during extreme events and is a critical goal in today’s power system operations. This paper presents a model for decentralized decision-making in power systems based on distributed optimization and implemented it on a modified RTS-96 test system, discusses the convergence of the problem, and compares the impact of decision-making mechanisms on power system resilience. Results show that a decentralized decision-making algorithm can significantly reduce power outages when part of the system is islanded during severe transmission contingencies.more » « less
-
Among current priorities of the power system analysis is the development of metrics and computational tools for the resilience analysis during catastrophic events. New methods and tools are required for such an analysis and they have to be validated prior application to real systems. However, benchmark problems are not readily available due to the analysis novelty. The current paper presents a case based on the IEEE 14-bus system for this purpose. The grid is simplified to a graph with nodes representing generators, loads, and buses. Power inputs are imported from real-time simulations of the IEEE 14-bus system. Outcomes of all possible combinations of failed elements are presented in terms of probabilities for the grid to survive, partially survive, or fail. Only the power grid's ability to withstand adverse events (survivability) is analyzed. The grid's recoverability, the other part of the resilience analysis, is not considered.more » « less