skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Security of a Power System Under High Penetration of Wind Energy Considering Contingencies and Stability Margins
Security is a well-known function to any transmission operator and system planner. As the world is moving toward the decarbonization of the power industry, it is more complicated for the system operators to maintain an acceptable level of security in the power system operation. More large-scale wind farms are being incorporated into the grid, and thus, the voltage stability concern is increasing. In practice, several contingencies are imagined by the system operators to assess the reliability of the grid. Since voltage stability is one of the major menaces that can trigger voltage instability in a power system, this paper is attempting to present to the transmission system planners and operators a dedicated methodology to facilitate the incorporation of large-scale wind farms into a transmission grid under high penetration of wind power. the stability of a wind-dominated power system is discussed based on Q-V and P-V methodologies and some N-1 contingencies with the Remedial Action Schemes (RAS). Furthermore, a methodology to rank the worst contingencies and to predict the voltage collapse during the highest wind penetration level is presented. Simulations have been, extensively, carried out to examine the methodology and have provided valuable information about the static security of the wind-dominated power system. The results can be used by the transmission system operator to anticipate voltage instability or voltage collapse in the power system during high wind penetration levels.  more » « less
Award ID(s):
1939144
PAR ID:
10317605
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE 19th Student Conference on Research and Development (SCOReD)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In recent years, penetration of renewable energy resources into the power grid has increased significantly. Wind, as a renewable, clean, and abundantly available source of energy, has an important share in the energy mix. However, increasing the penetration of wind power in the power grid can adversely affect the power quality and introduce new operational challenges. This paper discusses issues related to the integration of wind farms in the power system, such as maximum power point tracking, fault ride-through capabilities, interarea and subsynchronous oscillations, and voltage flicker, and provides a review of the existing control strategies to address these issues in Types I, II, III, and IV wind turbines. This paper also identifies challenges and opportunities ahead. 
    more » « less
  2. This paper presents a 17-bus 500 kV test system for transmission expansion planning (TEP) studies. An actual 500 kV transmission line geometry was used for the overhead lines of this system. Although many test systems have been introduced for different types of power system analysis, those especially for TEP studies at a transmission voltage level, not distribution voltage level, are few. To the best of our knowledge, the introduced test systems for TEP studies, either those combined with electricity market problems or those used to connect a new load or generation to an existing power grid, consider the studies under only normal condition. However, for TEP studies it is needed that a test system meets voltage drop and line loading limits criteria under normal condition as well as all single contingencies, and in this regard, addressing the latter, all single contingencies, is challenging. This paper addresses this technical gap, introducing a 17-bus test system at a transmission voltage level, 500 kV, that meets requirements under normal condition as well as all single contingencies. In addition to presenting all details of this new test system, load flow results under normal condition as well as the worst single contigency are presented. For studies on the TEP, this test system can be an invaluable resource. 
    more » « less
  3. This paper proposes a simple yet effective method for power system probabilistic transient stability assessment considering the wind farm uncertainties and correlations. Specifically, the inverse Nataf-transformation-based three-point estimation method and the Cornish-Fisher expansion have been integrated together to deal with the uncertainties and the correlations among different wind farms. Then, by resorting to the extended dynamic security region approach, the transient stability criterion is derived as a linear combination of nodal injection vector under a given fault condition. New indices for the identification of critical lines have also been developed. Extensive simulation results carried out on four different systems, including the practical GZ power system in China show that the computational efficiency of the proposed method is much higher than the Monte-Carlo-based method and other methods almost without the loss of accuracy. The effectiveness of the proposed method under different penetrations of wind power with different degree of correlations is also validated. It is shown that correlation among wind farms has a larger impact on the transient stability results with a higher penetration level of renewable energy. 
    more » « less
  4. Traditional load shedding schemes can be inadequate in grids with high renewable penetration, leading to unstable events and unnecessary grid islanding. Although for both manual and automatic operating modes load shedding areas have been predefined by grid operators, they have remained fixed, and may be sub-optimal due to dynamic operating conditions. In this work, a distributed tri-level linear programming model for automatic load shedding to avoid system islanding is presented. Preventing islanding is preferred because it reduces the need for additional load shedding besides the disconnection of transmission lines between islands. This is crucial as maintaining the local generation-demand balance is necessary to preserve frequency stability. Furthermore, uneven distribution of generation resources among islands can lead to increased load shedding, causing economic and reliability challenges. This issue is further compounded in modern power systems heavily dependent on non-dispatchable resources like wind and solar. The upper-level model uses complex power flow measurements to determine the system areas to shed load depending on actual operating conditions using a spectral clustering approach. The mid-level model estimates the area system state, while the lower-level model determines the locations and load values to be shed. The solution is practical and promising for real-world applications. 
    more » « less
  5. Voltage collapse is a type of blackout-inducing dynamic instability that occurs when the power demand exceeds the maximum power that can be transferred through the network. The traditional (preventive) approach to avoid voltage collapse is based on ensuring that the network never reaches its maximum capacity. However, such an approach leads to inefficiencies as it prevents operators to fully utilize the network resources and does not account for unprescribed events. To overcome this limitation, this paper seeks to initiate the study of voltage collapse stabilization. More precisely, for a DC star network, we formulate the problem of voltage stability as a dynamic problem where each load seeks to achieve a constant power consumption by updating its conductance as the voltage changes. We show that such a system can be interpreted as a game, where each player (load) seeks to myopically maximize their utility using a gradient-based response. Using this framework, we show that voltage collapse is the unique Nash Equilibrium of the induced game and is caused by the lack of cooperation between loads. Finally, we propose a Voltage Collapse Stabilizer (VCS) controller that uses (flexible) loads that are willing to cooperate and provides a fair allocation of the curtailed demand. Our solution stabilizes voltage collapse even in the presence of non-cooperative loads. Numerical simulations validate several features of our controllers. 
    more » « less