skip to main content


Title: A Benchmark Case for the Grid Survivability Analysis
Among current priorities of the power system analysis is the development of metrics and computational tools for the resilience analysis during catastrophic events. New methods and tools are required for such an analysis and they have to be validated prior application to real systems. However, benchmark problems are not readily available due to the analysis novelty. The current paper presents a case based on the IEEE 14-bus system for this purpose. The grid is simplified to a graph with nodes representing generators, loads, and buses. Power inputs are imported from real-time simulations of the IEEE 14-bus system. Outcomes of all possible combinations of failed elements are presented in terms of probabilities for the grid to survive, partially survive, or fail. Only the power grid's ability to withstand adverse events (survivability) is analyzed. The grid's recoverability, the other part of the resilience analysis, is not considered.  more » « less
Award ID(s):
1757207
NSF-PAR ID:
10315859
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE Power & Energy Society General Meeting (PESGM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DC microgrids incorporate several converters for distributed energy resources connected to different passive and active loads. The complex interactions between the converters and components and their potential failures can significantly affect the grids' resilience and health; hence, they must be continually assessed and monitored. This paper presents a machine learning-assisted prognostic health monitoring (PHM) and diagnosis approach, enabling progressive interactions between the converters at multiple nodes to dynamically examine the grid's (or micro-grid's) health in real time. By measuring the resulting impedance at the power converters' terminals at various grid nodes, a neural network-based classifier helps detect the grid's health condition and identify the potential fault-prone zones, along with the type and location of the fault type in the grid topology. For a faulty grid, a Naive Bayes and a support vector machine (SVM)-based classifiers are used to locate and identify the faulty type, respectively. A separate neural network-based regression model predicts the source power delivered and the loads at different terminals in a healthy grid network. The proposed concepts are supported by detailed analysis and simulation results in a simple four-terminal DC microgrid topology and a standard IEEE 5 Bus system. 
    more » « less
  2. Phasor Measurement Units (PMU), due to their capability for providing highly precise and time-synchronized measurements of synchrophasors, have now become indispensable in wide area monitoring of power-grid systems. Successful and reliable delivery of synchrophasor packets from the PMUs to the Phasor Data Concentrators (PDCs) and beyond, requires a backbone communication network that is robust and resilient to failures. These networks are vulnerable to a range of failures that include cyber-attacks, system or device level outages and link failures. In this paper, we present a framework to evaluate the resilience of a PMU network in the context of link failures. We model the PMU network as a connected graph and link failures as edges being removed from the graph. Our approach, inspired by model checking methods, involves exhaustively checking the reachability of PMU nodes to PDC nodes, for all possible combinations of link failures, given an expected number of links fail simultaneously. Using the IEEE 14-bus system, we illustrate the construction of the graph model and the solution design. Finally, a comparative evaluation on how adding redundant links to the network improves the Power System Observability, is performed on the IEEE 118 bus-system. 
    more » « less
  3. Timely and accurate detection of events affecting the stability and reliability of power transmission systems is crucial for safe grid operation. This paper presents an efficient unsupervised machine-learning algorithm for event detection using a combination of discrete wavelet transform (DWT) and convolutional autoencoders (CAE) with synchrophasor phasor measurements. These measurements are collected from a hardware-in-the-loop testbed setup equipped with a digital real-time simulator. Using DWT, the detail coefficients of measurements are obtained. Next, the decomposed data is then fed into the CAE that captures the underlying structure of the transformed data. Anomalies are identified when significant errors are detected between input samples and their reconstructed outputs. We demonstrate our approach on the IEEE-14 bus system considering different events such as generator faults, line-to-line faults, line-to-ground faults, load shedding, and line outages simulated on a real-time digital simulator (RTDS). The proposed implementation achieves a classification accuracy of 97.7%, precision of 98.0%, recall of 99.5%, F1 Score of 98.7%, and proves to be efficient in both time and space requirements compared to baseline approaches. 
    more » « less
  4. Resilience of the power grid is most challenged at power blackouts since the issues that led to it may not be fully resolved by the time the power is back. In this paper, a Real-Time Energy Management Algorithm (RTEMA) has been developed to increase the resilience of power systems based on the controlled delivery grid (CDG) concept. In a CDG, loads communicate with a central controller, periodically sending requests for power. The central controller runs an algorithm, based on which it may decide whether to grant the requested energy fully or partially. Therefore, the CDG limits loads discretionary access to electric energy until all problems are resolved. The developed algorithm aims at granting most or all of the requested loads, while maintaining the health of the power system (i.e. the voltage at each bus, and the line loading are within acceptable limits), and minimizing the overall losses. An IEEE 30-bus standard Test Case, encountering a blackout condition, with high penetration of microgrids, has been used to test the developed algorithm. Results proved that the developed algorithm with the CDG have the potential to substantially increase the resilience of power systems. 
    more » « less
  5. null (Ed.)
    In the modern power system networks, grid observability has greatly increased due to the deployment of various metering technologies. Such technologies enhanced the real-time monitoring of the grid. The collection of observations are processed by the state estimator in which many applications have relied on. Traditionally, state estimation on power grids has been done considering a centralized architecture. With grid deregulation, and awareness of information privacy and security, much attention has been given to multi-area state estimation. Considering such, state-of-the-art solutions consider a weighted norm of residual measurement model, which might hinder masked gross errors contained in the null-space of the Jacobian matrix. Towards the solution of this, a distributed innovation-based model is presented. Measurement innovation is used towards error composition. The measurement error is an independent random variable, where the residual is not. Thus, the masked component is recovered through measurement innovation. Model solution is obtained through an Alternating Direction Method of Multipliers (ADMM), which requires minimal information communication. The presented framework is validated using the IEEE 14 and IEEE 118 bus systems. Easy-to-implement model, build-on the classical weighted norm of the residual solution, and without hard-to-design parameters highlight potential aspects towards real-life implementation. 
    more » « less