skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial heterogeneity of the cytosol revealed by machine learning-based 3D particle tracking
The spatial structure and physical properties of the cytosol are not well understood. Measurements of the material state of the cytosol are challenging due to its spatial and temporal heterogeneity. Recent development of genetically encoded multimeric nanoparticles (GEMs) has opened up study of the cytosol at the length scales of multiprotein complexes (20–60 nm). We developed an image analysis pipeline for 3D imaging of GEMs in the context of large, multinucleate fungi where there is evidence of functional compartmentalization of the cytosol for both the nuclear division cycle and branching. We applied a neural network to track particles in 3D and then created quantitative visualizations of spatially varying diffusivity. Using this pipeline to analyze spatial diffusivity patterns, we found that there is substantial variability in the properties of the cytosol. We detected zones where GEMs display especially low diffusivity at hyphal tips and near some nuclei, showing that the physical state of the cytosol varies spatially within a single cell. Additionally, we observed significant cell-to-cell variability in the average diffusivity of GEMs. Thus, the physical properties of the cytosol vary substantially in time and space and can be a source of heterogeneity within individual cells and across populations.  more » « less
Award ID(s):
1664645 1816630 1931516 1840273
PAR ID:
10176272
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular Biology of the Cell
Volume:
31
Issue:
14
ISSN:
1059-1524
Page Range / eLocation ID:
1498 to 1511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Single-particle tracking (SPT) is a powerful technique for probing the diverse physical properties of the cytoplasm. Genetically encoded nanoparticles provide an especially convenient tool for such investigations, as they can be expressed and tracked in cells via fluorescence. Among these, 40-nm genetically encoded multimerics (GEMs) provide a unique opportunity to explore the cytoplasm. Their size corresponds to that of ribosomes and big protein complexes, allowing us to investigate the effects of the cytoplasm on the diffusivity of these objects while excluding the influence of chemical interactions during stressful events and pathological conditions. However, the effects of GEM expression levels on the measured cytoplasmic diffusivity remain largely uncharacterized in mammalian cells. To optimize the GEMs tracking and assess expression level effects, we developed a doxycycline-inducible GEM expression system and compared it with a previously reported constitutive expression system. The inducible GEM expression system reduced the number of GEM particles from 2000 to as low as 5–500 per average 2D cell cytoplasmic area, depending on doxycycline concentration and incubation time. This optimization enabled adjustment of particle density for imaging and improved homogeneity across the cell population. Moreover, we enhanced the analysis of GEM diffusivity by incorporating an effective diffusion coefficient that accounts for the type of motion and by quantifying motion heterogeneity through standard deviations of particle displacements within and between cells. 
    more » « less
  2. Recent technological advances have enabled spatially resolved measurements of expression profiles for hundreds to thousands of genes in fixed tissues at single-cell resolution. However, scalable computational analysis methods able to take into consideration the inherent 3D spatial organization of cell types and nonuniform cellular densities within tissues are still lacking. To address this, we developed MERINGUE, a computational framework based on spatial autocorrelation and cross-correlation analysis to identify genes with spatially heterogeneous expression patterns, infer putative cell–cell communication, and perform spatially informed cell clustering in 2D and 3D in a density-agnostic manner using spatially resolved transcriptomic data. We applied MERINGUE to a variety of spatially resolved transcriptomic data sets including multiplexed error-robust fluorescence in situ hybridization (MERFISH), spatial transcriptomics, Slide-seq, and aligned in situ hybridization (ISH) data. We anticipate that such statistical analysis of spatially resolved transcriptomic data will facilitate our understanding of the interplay between cell state and spatial organization in tissue development and disease. 
    more » « less
  3. Objective: We developed 3-dimensional spatially resolved gene neighborhood network embedding (3D-spaGNN-E) to find subcellular gene proximity relationships and identify key subcellular motifs in cell–cell communication (CCC). Impact Statement: The pipeline combines 3D imaging-based spatial transcriptomics and graph-based deep learning to identify subcellular motifs. Introduction: Advancements in imaging and experimental technology allow the study of 3D spatially resolved transcriptomics and capture better spatial context than approximating the samples as 2D. However, the third spatial dimension increases the data complexity and requires new analyses. Methods: 3D-spaGNN-E detects single transcripts in 3D cell culture samples and identifies subcellular gene proximity relationships. Then, a graph autoencoder projects the gene proximity relationships into a latent space. We then applied explainability analysis to identify subcellular CCC motifs. Results: We first applied the pipeline to mesenchymal stem cells (MSCs) cultured in hydrogel. After clustering the cells based on the RNA count, we identified cells belonging to the same cluster as homotypic and those belonging to different clusters as heterotypic. We identified changes in local gene proximity near the border between homotypic and heterotypic cells. When applying the pipeline to the MSC–peripheral blood mononuclear cell (PBMC) coculture system, we identified CD4+ and CD8+ T cells. Local gene proximity and autoencoder embedding changes can distinguish strong and weak suppression of different immune cells. Lastly, we compared astrocyte–neuron CCC in mouse hypothalamus and cortex by analyzing 3D multiplexed-error-robust fluorescence insitu hybridization (MERFISH) data and identified regional gene proximity differences. Conclusion: 3D-spaGNN-E distinguished distinct CCCs in cell culture and tissue by examining subcellular motifs 
    more » « less
  4. 3D printing technology is a powerful tool for manufacturing complex shapes with high-quality textures. Gloss, next to color and shape, is one of the most salient visual aspects of an object. Unfortunately, printing a wide range of spatially-varying gloss properties using state-of-the-art 3D printers is challenging as it relies on geometrical modifications to achieve the desired appearance. A common post-processing step is to apply off-the-shelf varnishes that modify the final gloss. The main difficulty in automating this process lies in the physical properties of the varnishes which owe their appearance to a high concentration of large particles and as such, they cannot be easily deposited with current 3D color printers. As a result, fine-grained control of gloss properties using today's 3D printing technologies is limited in terms of both spatial resolution and the range of achievable gloss. We address the above limitations and propose new printing hardware based on piezo-actuated needle valves capable of jetting highly viscous varnishes. Based on the new hardware setup, we present the complete pipeline for controlling the gloss of a given 2.5D object, from printer calibration, through material selection, to the manufacturing of models with spatially-varying reflectance. Furthermore, we discuss the potential integration with current 3D printing technology. Apart from being a viable solution for 3D printing, our method offers an additional and essential benefit of separating color and gloss fabrication which makes the process more flexible and enables high-quality color and gloss reproduction. 
    more » « less
  5. 3D printing technology is a powerful tool for manufacturing complex shapes with high-quality textures. Gloss, next to color and shape, is one of the most salient visual aspects of an object. Unfortunately, printing a wide range of spatially-varying gloss properties using state-of-the-art 3D printers is challenging as it relies on geometrical modifications to achieve the desired appearance. A common post-processing step is to apply off-the-shelf varnishes that modify the final gloss. The main difficulty in automating this process lies in the physical properties of the varnishes which owe their appearance to a high concentration of large particles and as such, they cannot be easily deposited with current 3D color printers. As a result, fine-grained control of gloss properties using today's 3D printing technologies is limited in terms of both spatial resolution and the range of achievable gloss. We address the above limitations and propose new printing hardware based on piezo-actuated needle valves capable of jetting highly viscous varnishes. Based on the new hardware setup, we present the complete pipeline for controlling the gloss of a given 2.5 D object, from printer calibration, through material selection, to the manufacturing of models with spatially-varying reflectance. Furthermore, we discuss the potential integration with current 3D printing technology. Apart from being a viable solution for 3D printing, our method offers an additional and essential benefit of separating color and gloss fabrication which makes the process more flexible and enables high-quality color and gloss reproduction. 
    more » « less