Abstract The field of photovoltaics is revolutionized in recent years by the development of two–dimensional (2D) type‐II heterostructures. These heterostructures are made up of two different materials with different electronic properties, which allows for the capture of a broader spectrum of solar energy than traditional photovoltaic devices. In this study, the potential of vanadium (V)‐doped WS2is investigated, hereafter labeled V‐WS2, in combination with air‐stable Bi2O2Se for use in high‐performance photovoltaic devices. Various techniques are used to confirm the charge transfer of these heterostructures, including photoluminescence (PL) and Raman spectroscopy, along with Kelvin probe force microscopy (KPFM). The results show that the PL is quenched by 40%, 95%, and 97% for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se, and 2 at.% V‐WS2/Bi2O2Se, respectively, indicating a superior charge transfer in V‐WS2/Bi2O2Se compared to pristine WS2/Bi2O2Se. The exciton binding energies for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se and 2 at.% V‐WS2/Bi2O2Se heterostructures are estimated to be ≈130, 100, and 80 meV, respectively, which is much lower than that for monolayer WS2. These findings confirm that by incorporating V‐doped WS2, charge transfer in WS2/Bi2O2Se heterostructures can be tuned, providing a novel light‐harvesting technique for the development of the next generation of photovoltaic devices based on V‐doped transition metal dichalcogenides (TMDCs)/Bi2O2Se.
more »
« less
Ultrathin Bi 2 O 2 S nanosheet near-infrared photodetectors
Recently, a zipper two-dimensional (2D) material Bi 2 O 2 Se belonging to the layered bismuth oxychalcogenide (Bi 2 O 2 X: X = S, Se, Te) family, has emerged as an alternate candidate to van der Waals 2D materials for high-performance electronic and optoelectronic applications. This hints towards exploring the other members of the Bi 2 O 2 X family for their true potential and bismuth oxysulfide (Bi 2 O 2 S) could be the next member for such applications. Here, we demonstrate for the first time, the scalable room-temperature chemical synthesis and near-infrared (NIR) photodetection of ultrathin Bi 2 O 2 S nanosheets. The thickness of the freestanding nanosheets was around 2–3 nm with a lateral dimension of ∼80–100 nm. A solution-processed NIR photodetector was fabricated from ultrathin Bi 2 O 2 S nanosheets. The photodetector showed high performance, under 785 nm laser illumination, with a photoresponsivity of 4 A W −1 , an external quantum efficiency of 630%, and a normalized photocurrent-to-dark-current ratio of 1.3 × 10 10 per watt with a fast response time of 100 ms. Taken together, the findings suggest that Bi 2 O 2 S nanosheets could be a promising alternative 2D material for next-generation large-area flexible electronic and optoelectronic devices.
more »
« less
- Award ID(s):
- 1831133
- PAR ID:
- 10176277
- Date Published:
- Journal Name:
- Nanoscale
- ISSN:
- 2040-3364
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Printed 2D materials, derived from solution‐processed inks, offer scalable and cost‐effective routes to mechanically flexible optoelectronics. With micrometer‐scale control and broad processing latitude, aerosol‐jet printing (AJP) is of particular interest for all‐printed circuits and systems. Here, AJP is utilized to achieve ultrahigh‐responsivity photodetectors consisting of well‐aligned, percolating networks of semiconducting MoS2nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high‐aspect‐ratio (≈1 μm lateral size) MoS2nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high‐boiling‐point solvent terpineol into the MoS2ink is critical for achieving a highly aligned and flat thin‐film morphology following AJP as confirmed by grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi‐ohmic contacts and photoactive channels with responsivities exceeding 103 A W−1that outperform previously reported all‐printed visible‐light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics.more » « less
-
null (Ed.)Bismuth oxide is an important bismuth compound having applications in electronics, photo-catalysis and medicine. At the nanoscale, bismuth oxide experiences a variety of new physico-chemical properties because of its increased surface to volume ratio leading to potentially new applications. In this manuscript, we report for the very first time the synthesis of bismuth oxide (Bi 2 O 3 ) nano-flakes by pulsed laser ablation in liquids without any external assistance (no acoustic, electric field, or magnetic field). The synthesis was performed by irradiating, pure bismuth needles immerged in de-ionized water, at very high fluence ∼160 J cm −2 in order to be highly selective and only promote the growth of two-dimensional structures. The x - and y -dimensions of the flakes were around 1 μm in size while their thickness was 47.0 ± 12.7 nm as confirmed by AFM analysis. The flakes were confirmed to be α- and γ-Bi 2 O 3 by SAED and Raman spectroscopy. By using this mixture of flakes, we demonstrated that the nanostructures can be used as antimicrobial agents, achieving a complete inhibition of Gram positive (MSRA) and Gram negative bacteria (MDR-EC) at low concentration, ∼50 ppm.more » « less
-
Low temperature synthesis of high quality two-dimensional (2D) materials directly on flexible substrates remains a fundamental limitation towards scalable realization of robust flexible electronics possessing the unique physical properties of atomically thin structures. Herein, we describe room temperature sputtering of uniform, stoichiometric amorphous MoS 2 and subsequent large area (>6.25 cm 2 ) photonic crystallization of 5 nm 2H-MoS 2 films in air to enable direct, scalable fabrication of ultrathin 2D photodetectors on stretchable polydimethylsiloxane (PDMS) substrates. The lateral photodetector devices demonstrate an average responsivity of 2.52 μW A −1 and a minimum response time of 120 ms under 515.6 nm illumination. Additionally, the surface wrinkled, or buckled, PDMS substrate with conformal MoS 2 retained the photoconductive behavior at tensile strains as high as 5.72% and over 1000 stretching cycles. The results indicate that the photonic crystallization method provides a significant advancement in incorporating high quality semiconducting 2D materials applied directly on polymer substrates for wearable and flexible electronic systems.more » « less
-
Abstract A comprehensive experimental study on optical properties and photocarrier dynamics in Bi2O2Se monolayers and nanoplates is presented. Large and uniform Bi2O2Se nanoplates with various thicknesses down to the monolayer limit are fabricated. In nanoplates, a direct optical transition near 720 nm is identified by optical transmission, photoluminescence, and transient absorption spectroscopic measurements and is attributed to the transition between the valence and conduction bands in the Γ valley. Time‐resolved differential reflection measurements reveal ultrafast carrier thermalization and energy relaxation processes and a photocarrier recombination lifetime of about 200 ps in nanoplates. Furthermore, by spatially resolving the differential reflection signal, a photocarrier diffusion coefficient of about 4.8 cm2s−1is obtained, corresponding to a mobility of about 180 cm2V−1s−1. A similar direct transition is also observed in monolayer Bi2O2Se, suggesting that the states in the Γ valley do not change significantly with the thickness. The temporal dynamics of the excitons in the monolayer is quite different from the nanoplates, with a strong saturation effect and fast exciton–exciton annihilation at high densities. Spatially and temporally resolved measurements yield an exciton diffusion coefficient of about 20 cm2s−1.more » « less