skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Freedom of the Press and Public Responsiveness
Public responsiveness to policy is contingent on there being a sufficient amount of clear and accurate information about policy available to citizens. It is of some significance then, that there are increasing concerns about limits being placed on media outlets around the world. We examine the impact of these limits on the public’s ability to respond meaningfully to policy by analyzing cross-national variation in the opinion–policy link. Using new measures on spending preferences from Wave 4 of the Comparative Study of Electoral Systems, merged with OECD data on government spending and Freedom House measures of press freedom, we assess the role of mass media in facilitating public responsiveness. We find evidence that when media are weak, so too is public responsiveness to policy. These results highlight the critical role that accurate, unfettered media can play in modern representative democracy.  more » « less
Award ID(s):
1728792
PAR ID:
10176336
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Perspectives on Politics
ISSN:
1537-5927
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The way media portray public health problems influences the public’s perception of problems and related solutions. Social media allows users to engage with news and to collectively construct meaning. This paper examined news in comparison to user-generated content related to opioids to understand the role of second-level agenda-setting in public health. We analyzed 162,760 tweets about the opioid crisis, and compared the main topics and their sentiments with 2998 opioid stories from The New York Times online. Evidence from this study suggests that second-level agenda setting on social media is different from the news; public communication about opioids on X/Twitter highlights attributes that are different from those highlighted in the news. The findings suggest that public health communication should strategically utilize social media data, including obtaining consumer insight from personal tweets, listening to diverse views and warning signs from issue tweets, and tuning in to the media for policy trends. 
    more » « less
  2. Association for the Advancement of Artificial Intelligence (Ed.)
    Given the heightened global awareness and attention to the negative externalities of plastics use, many state and local governments are considering legislation that will limit single-use plastics for consumers and retailers under extended producer responsibility laws. Considering the growing momentum of these climate regulations globally, there is a need for reliable and cost-effective measures of the public response to this rulemaking for inference and prediction. Automated computational approaches such as generative AI could enable real-time discovery of consumer preferences for regulations but have yet to see broad adoption in this domain due to concerns about evaluation costs and reliability across large-scale social data. In this study, we leveraged the zero and few-shot learning capabilities of GPT-4 to classify public sentiment towards regulations with increasing complexity in expert prompting. With a zero-shot approach, we achieved a 92% F1 score (s.d. 1%) and 91% accuracy (s.d. 1%), which resulted in three orders of magnitude lower research evaluation cost at 0.138 pennies per observation. We then use this model to analyze 5,132 tweets related to the policy process of the California SB-54 bill, which mandates user fees and limits plastic packaging. The policy study reveals a 12.4% increase in opposing public sentiment immediately after the bill was enacted with no significant changes earlier in the policy process. These findings shed light on the dynamics of public engagement with lower cost models for research evaluation. We find that public opposition to single-use plastics regulation becomes evident in social data only when a bill is effectively enacted. 
    more » « less
  3. Given the heightened global awareness and attention to the negative externalities of plastics use, many state and local governments are considering legislation that will limit single-use plastics for consumers and retailers under extended producer responsibility laws. Considering the growing momentum of these single-use plastics regulations globally, there is a need for reliable and cost-effective measures of the public response to this rulemaking for inference and prediction. Automated computational approaches such as generative AI could enable real-time discovery of consumer preferences for regulations but have yet to see broad adoption in this domain due to concerns about evaluation costs and reliability across large-scale social data. In this study, we leveraged the zero and few-shot learning capabilities of GPT-4 to classify public sentiment towards regulations with increasing complexity in expert prompting. With a zero-shot approach, we achieved a 92% F1 score (s.d. 1%) and 91% accuracy (s.d. 1%), which resulted in three orders of magnitude lower research evaluation cost at 0.138 pennies per observation. We then use this model to analyze 5,132 tweets related to the policy process of the California SB-54 bill, which mandates user fees and limits plastic packaging. The policy study reveals a 12.4% increase in opposing public sentiment immediately after the bill was enacted with no significant changes earlier in the policy process. These findings shed light on the dynamics of public engagement with lower cost models for research evaluation. We find that public opposition to single-use plastics regulations becomes evident in social data only when a bill is effectively enacted. 
    more » « less
  4. E-healthcare has been envisaged as a major component of the infrastructure of modern healthcare, and has been developing rapidly in China. For healthcare, news media can play an important role in raising public interest and utilization of a particular service and complicating (and, perhaps clouding) debate on public health policy issues. We conducted a linguistic analysis of news reports from January 2015 to June 2021 related to E-healthcare in mainland China, using a heterogeneous graphical modeling approach. This approach can simultaneously cluster the datasets and estimate the conditional dependence relationships of keywords. It was found that there were eight phases of media coverage. The focuses and main topics of media coverage were extracted based on the network hub and module detection. The temporal patterns of media reports were found to be mostly consistent with the policy trend. Specifically, in the policy embryonic period (2015–2016), two phases were obtained, industry management was the main topic, and policy and regulation were the focuses of media coverage. In the policy development period (2017–2019), four phases were discovered. All the four main topics, namely industry development, health care, financial market, and industry management, were present. In 2017 Q3–2017 Q4, the major focuses of media coverage included social security, healthcare and reform, and others. In 2018 Q1, industry regulation and finance became the focuses. In the policy outbreak period (2020–), two phases were discovered. Financial market and industry management were the main topics. Medical insurance and healthcare for the elderly became the focuses. This analysis can offer insights into how the media responds to public policy for E-healthcare, which can be valuable for the government, public health practitioners, health care industry investors, and others. 
    more » « less
  5. null (Ed.)
    Background The COVID-19 pandemic has caused several disruptions in personal and collective lives worldwide. The uncertainties surrounding the pandemic have also led to multifaceted mental health concerns, which can be exacerbated with precautionary measures such as social distancing and self-quarantining, as well as societal impacts such as economic downturn and job loss. Despite noting this as a “mental health tsunami”, the psychological effects of the COVID-19 crisis remain unexplored at scale. Consequently, public health stakeholders are currently limited in identifying ways to provide timely and tailored support during these circumstances. Objective Our study aims to provide insights regarding people’s psychosocial concerns during the COVID-19 pandemic by leveraging social media data. We aim to study the temporal and linguistic changes in symptomatic mental health and support expressions in the pandemic context. Methods We obtained about 60 million Twitter streaming posts originating from the United States from March 24 to May 24, 2020, and compared these with about 40 million posts from a comparable period in 2019 to attribute the effect of COVID-19 on people’s social media self-disclosure. Using these data sets, we studied people’s self-disclosure on social media in terms of symptomatic mental health concerns and expressions of support. We employed transfer learning classifiers that identified the social media language indicative of mental health outcomes (anxiety, depression, stress, and suicidal ideation) and support (emotional and informational support). We then examined the changes in psychosocial expressions over time and language, comparing the 2020 and 2019 data sets. Results We found that all of the examined psychosocial expressions have significantly increased during the COVID-19 crisis—mental health symptomatic expressions have increased by about 14%, and support expressions have increased by about 5%, both thematically related to COVID-19. We also observed a steady decline and eventual plateauing in these expressions during the COVID-19 pandemic, which may have been due to habituation or due to supportive policy measures enacted during this period. Our language analyses highlighted that people express concerns that are specific to and contextually related to the COVID-19 crisis. Conclusions We studied the psychosocial effects of the COVID-19 crisis by using social media data from 2020, finding that people’s mental health symptomatic and support expressions significantly increased during the COVID-19 period as compared to similar data from 2019. However, this effect gradually lessened over time, suggesting that people adapted to the circumstances and their “new normal.” Our linguistic analyses revealed that people expressed mental health concerns regarding personal and professional challenges, health care and precautionary measures, and pandemic-related awareness. This study shows the potential to provide insights to mental health care and stakeholders and policy makers in planning and implementing measures to mitigate mental health risks amid the health crisis. 
    more » « less