skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximation Algorithms for the Single Robot Line Coverage Problem
The line coverage problem is the task of servicing a given set of one-dimensional features in an environment. Its applications include the inspection of road networks, power lines, and oil and gas lines. The line coverage problem is a generalization of the standard arc routing problems, and is NP-hard in general. We address the single robot line coverage problem where the service and deadhead costs are distinct and asymmetric. We model the problem as an optimization problem that minimizes the total cost of travel on a given graph. We present approximation algorithms to obtain bounded solutions efficiently, using the minimum cost flow problem. We build the main algorithm in stages by considering three simpler subproblems. The subproblems are based on the structure of the required graph, i.e., the graph induced by the features that require servicing. We fi rst present an optimal algorithm for the case of Eulerian graphs with only required edges. Next we consider general graphs, not necessarily Eulerian, with only required edges and present a 2-approximation algorithm. Finally, we consider the general case with both required and non-required edges. The approximation algorithm is dependent on the Asymmetric Traveling Salesperson Problem (ATSP), and is bounded by alpha(C) + 2, where alpha(C) is the approximation factor of the ATSP algorithm with C connected components. Our upper bound is also an improvement over the existing results for the asymmetric rural postman problem.  more » « less
Award ID(s):
1919233 1547175 1439695
PAR ID:
10176424
Author(s) / Creator(s):
;
Editor(s):
LaValle, Steve M.; Lin, Ming; Ojala, Timo; Shell, Dylan; Yu, Jingjin
Date Published:
Journal Name:
Algorithmic Foundations of Robotics XIV (WAFR 2020)
Page Range / eLocation ID:
534-550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Line coverage is the task of servicing a given set of one‐dimensional features in an environment. It is important for the inspection of linear infrastructure such as road networks, power lines, and oil and gas pipelines. This paper addresses the single robot line coverage problem for aerial and ground robots by modeling it as an optimization problem on a graph. The problem belongs to the broad class of arc routing problems and is closely related to the rural postman problem (RPP) on asymmetric graphs. The paper presents an integer linear programming formulation with proofs of correctness. Using the minimum cost flow problem, we develop approximation algorithms with guarantees on the solution quality. These guarantees also improve the existing results for the asymmetric RPP. The main algorithm partitions the problem into three cases based on the structure of therequired graph, that is, the graph induced by the features that require servicing. We evaluate our algorithms on road networks from the 50 most populous cities in the world, consisting of up to 730 road segments. The algorithms, augmented with improvement heuristics, run within 3 s and generate solutions that are within 10% of the optimum. We experimentally demonstrate our algorithms with commercial UAVs on the UNC Charlotte campus road network. 
    more » « less
  2. In the Correlation Clustering problem, we are given a weighted graph $$G$$ with its edges labelled as "similar" or "dissimilar" by a binary classifier. The goal is to produce a clustering that minimizes the weight of "disagreements": the sum of the weights of "similar" edges across clusters and "dissimilar" edges within clusters. We study the correlation clustering problem under the following assumption: Every "similar" edge $$e$$ has weight $$w_e \in [ \alpha w, w ]$$ and every "dissimilar" edge $$e$$ has weight $$w_e \geq \alpha w$$ (where $$\alpha \leq 1$$ and $w > 0$ is a scaling parameter). We give a $$(3 + 2 \log_e (1/\alpha))$$ approximation algorithm for this problem. This assumption captures well the scenario when classification errors are asymmetric. Additionally, we show an asymptotically matching Linear Programming integrality gap of $$\Omega(\log 1/\alpha)$$ 
    more » « less
  3. Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider a relaxed version of this problem in the setting of local algorithms. The relaxation is that the constructed subgraph is a sparse spanning subgraph containing at most (1+ϵ)n edges (where n is the number of vertices and ϵ is a given approximation/sparsity parameter). In the local setting, the goal is to quickly determine whether a given edge e belongs to such a subgraph, without constructing the whole subgraph, but rather by inspecting (querying) the local neighborhood of e. The challenge is to maintain consistency. That is, to provide answers concerning different edges according to the same spanning subgraph. We first show that for general bounded-degree graphs, the query complexity of any such algorithm must be Ω(n−−√). This lower bound holds for constant-degree graphs that have high expansion. Next we design an algorithm for (bounded-degree) graphs with high expansion, obtaining a result that roughly matches the lower bound. We then turn to study graphs that exclude a fixed minor (and are hence non-expanding). We design an algorithm for such graphs, which may have an unbounded maximum degree. The query complexity of this algorithm is poly(1/ϵ,h) (independent of n and the maximum degree), where h is the number of vertices in the excluded minor. Though our two algorithms are designed for very different types of graphs (and have very different complexities), on a high-level there are several similarities, and we highlight both the similarities and the differences. 
    more » « less
  4. Belkin, Mikhail; Kpotufe, Samory (Ed.)
    Graph matching, also known as network alignment, refers to finding a bijection between the vertex sets of two given graphs so as to maximally align their edges. This fundamental computational problem arises frequently in multiple fields such as computer vision and biology. Recently, there has been a plethora of work studying efficient algorithms for graph matching under probabilistic models. In this work, we propose a new algorithm for graph matching: Our algorithm associates each vertex with a signature vector using a multistage procedure and then matches a pair of vertices from the two graphs if their signature vectors are close to each other. We show that, for two Erdős–Rényi graphs with edge correlation $$1-\alpha$$, our algorithm recovers the underlying matching exactly with high probability when $$\alpha \le 1 / (\log \log n)^C$$, where $$n$$ is the number of vertices in each graph and $$C$$ denotes a positive universal constant. This improves the condition $$\alpha \le 1 / (\log n)^C$$ achieved in previous work. 
    more » « less
  5. The line coverage problem is the coverage of linear environment features (e.g., road networks, power lines), modeled as 1D segments, by one or more robots while respecting resource constraints (e.g., battery capacity, flight time) for each of the robots. The robots incur direction dependent costs and resource demands as they traverse the edges. We treat the line coverage problem as an optimization problem, with the total cost of the tours as the objective, by formulating it as a mixed integer linear program (MILP). The line coverage problem is NP-hard and hence we develop a heuristic algorithm, Merge- Embed-Merge (MEM). We compare it against the optimal MILP approach and a baseline heuristic algorithm, Extended Path Scanning. We show the MEM algorithm is fast and suitable for real-time applications. To tackle large-scale problems, our approach performs graph simplification and graph partitioning, followed by robot tour generation for each of the partitioned subgraphs. We demonstrate our approach on a large graph with 4,658 edges and 4,504 vertices that represents an urban region of about 16 sq. km. We compare the performance of the algorithms on several small road networks and experimentally demonstrate the approach using UAVs on the UNC Charlotte campus road network. 
    more » « less