Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper addresses the problem of robotic exploration of unknown indoor environments with deadlines. Indoor exploration using mobile robots has typically focused on exploring the entire environment without considering deadlines. The objective of the prioritized exploration in this paper is to rapidly compute the geometric layout of an initially unknown environment by exploring key regions of the environment and returning to the home location within a deadline. This prioritized exploration is useful for time-critical and dangerous environments where rapid robot exploration can provide vital information for subsequent operations. For example, firefighters, for whom time is of the essence, can utilize the map generated by this robotic exploration to navigate a building on fire. In our previous work, we showed that a priority-based greedy algorithm can outperform a cost-based greedy algorithm for exploration under deadlines. This paper models the prioritized exploration problem as an Orienteering Problem (OP) and a Profitable Tour Problem (PTP) in an attempt to generate exploration strategies that can explore a greater percentage of the environment in a given amount of time. The paper presents simulation results on multiple graph-based and Gazebo environments. We found that in many cases the priority-based greedy algorithm performs on par or better than the OP and PTP-based algorithms. We analyze the potential reasons for this counterintuitive result.more » « less
-
LaValle, Steven M. ; O'Kane, Jason M. ; Otte, Michael ; Sadigh, Dorsa ; Tokekar, Pratap (Ed.)This paper introduces the correlated arc orienteering problem (CAOP), where the task is to find routes for a team of robots to maximize the collection of rewards associated with features in the environment. These features can be one-dimensional or points in the environment, and can have spatial correlation, i.e., visiting a feature in the environment may provide a portion of the reward associated with a correlated feature. A robot incurs costs as it traverses the environment, and the total cost for its route is limited by a resource constraint such as battery life or operation time. As environments are often large, we permit multiple depots where the robots must start and end their routes. The CAOP generalizes the correlated orienteering problem (COP), where the rewards are only associated with point features, and the arc orienteering problem (AOP), where the rewards are not spatially correlated. We formulate a mixed integer quadratic program (MIQP) that formalizes the problem and gives optimal solutions. However, the problem is NP-hard, and therefore we develop an efficient greedy constructive algorithm. We illustrate the problem with two different applications: informative path planning for methane gas leak detection and coverage of road networks.more » « less
-
LaValle, Steve M. ; Lin, Ming ; Ojala, Timo ; Shell, Dylan ; Yu, Jingjin (Ed.)The line coverage problem is the task of servicing a given set of one-dimensional features in an environment. Its applications include the inspection of road networks, power lines, and oil and gas lines. The line coverage problem is a generalization of the standard arc routing problems, and is NP-hard in general. We address the single robot line coverage problem where the service and deadhead costs are distinct and asymmetric. We model the problem as an optimization problem that minimizes the total cost of travel on a given graph. We present approximation algorithms to obtain bounded solutions efficiently, using the minimum cost flow problem. We build the main algorithm in stages by considering three simpler subproblems. The subproblems are based on the structure of the required graph, i.e., the graph induced by the features that require servicing. We first present an optimal algorithm for the case of Eulerian graphs with only required edges. Next we consider general graphs, not necessarily Eulerian, with only required edges and present a 2-approximation algorithm. Finally, we consider the general case with both required and non-required edges. The approximation algorithm is dependent on the Asymmetric Traveling Salesperson Problem (ATSP), and is bounded by alpha(C) + 2, where alpha(C) is the approximation factor of the ATSP algorithm with C connected components. Our upper bound is also an improvement over the existing results for the asymmetric rural postman problem.more » « less
-
The line coverage problem is the coverage of linear environment features (e.g., road networks, power lines), modeled as 1D segments, by one or more robots while respecting resource constraints (e.g., battery capacity, flight time) for each of the robots. The robots incur direction dependent costs and resource demands as they traverse the edges. We treat the line coverage problem as an optimization problem, with the total cost of the tours as the objective, by formulating it as a mixed integer linear program (MILP). The line coverage problem is NP-hard and hence we develop a heuristic algorithm, Merge- Embed-Merge (MEM). We compare it against the optimal MILP approach and a baseline heuristic algorithm, Extended Path Scanning. We show the MEM algorithm is fast and suitable for real-time applications. To tackle large-scale problems, our approach performs graph simplification and graph partitioning, followed by robot tour generation for each of the partitioned subgraphs. We demonstrate our approach on a large graph with 4,658 edges and 4,504 vertices that represents an urban region of about 16 sq. km. We compare the performance of the algorithms on several small road networks and experimentally demonstrate the approach using UAVs on the UNC Charlotte campus road network.more » « less