skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy transport in glasses
The temperature dependence of the thermal conductivity is linked to the nature of the energy transport at a frequency ω , which is quantified by thermal diffusivity d ( ω ). Here we study d ( ω ) for a poorly annealed glass and a highly stable glass prepared using the swap Monte Carlo algorithm. To calculate d ( ω ), we excite wave packets and find that the energy moves diffusively for high frequencies up to a maximum frequency, beyond which the energy stays localized. At intermediate frequencies, we find a linear increase of the square of the width of the wave packet with time, which allows for a robust calculation of d ( ω ), but the wave packet is no longer well described by a Gaussian as for high frequencies. In this intermediate regime, there is a transition from a nearly frequency independent thermal diffusivity at high frequencies to d ( ω ) ∼ ω −4 at low frequencies. For low frequencies the sound waves are responsible for energy transport and the energy moves ballistically. The low frequency behavior can be predicted using sound attenuation coefficients.  more » « less
Award ID(s):
1800282
PAR ID:
10176498
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
3
ISSN:
1744-683X
Page Range / eLocation ID:
775 to 783
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heat transport can serve as a fingerprint identifying different states of matter. In a normal liquid, a hotspot diffuses, whereas in a superfluid, heat propagates as a wave called “second sound.” Direct imaging of heat transport is challenging, and one usually resorts to detecting secondary effects. In this study, we establish thermography of a strongly interacting atomic Fermi gas, whose radio-frequency spectrum provides spatially resolved thermometry with subnanokelvin resolution. The superfluid phase transition was directly observed as the sudden change from thermal diffusion to second-sound propagation and is accompanied by a peak in the second-sound diffusivity. This method yields the full heat and density response of the strongly interacting Fermi gas and therefore all defining properties of Landau’s two-fluid hydrodynamics. 
    more » « less
  2. A model for the thermal conductivity of bulk solids is proposed in the limit of diffusive transport mediated by diffusons as opposed to phonons. This diffusive thermal conductivity, κ diff , is determined by the average energy of the vibrational density of states, ℏ ω avg , and the number density of atoms, n . Furthermore, κ diff is suggested as an appropriate estimate of the minimum thermal conductivity for complex materials, such that (at high temperatures): . A heuristic finding of this study is that the experimental ω avg is highly correlated with the Debye temperature, allowing κ diff to be estimated from the longitudinal and transverse speeds of sound: . Using this equation to estimate κ min gives values 37% lower than the widely-used Cahill result and 18% lower than the Clarke model for κ min , on average. This model of diffuson-mediated thermal conductivity may thus help explain experimental results of ultralow thermal conductivity. 
    more » « less
  3. Canlon Barbara (Ed.)
    The human auditory system can localize multiple sound sources using time, intensity, and frequency cues in the sound received by the two ears. Being able to spatially segregate the sources helps perception in a challenging condition when multiple sounds coexist. This study used model simulations to explore an algorithm for localizing multiple sources in azimuth with binaural (i.e., two) microphones. The algorithm relies on the “sparseness” property of daily signals in the time-frequency domain, and sound coming from different locations carrying unique spatial features will form clusters. Based on an interaural normalization procedure, the model generated spiral patterns for sound sources in the frontal hemifield. The model itself was created using broadband noise for better accuracy, because speech typically has sporadic energy at high frequencies. The model at an arbitrary frequency can be used to predict locations of speech and music that occurred alone or concurrently, and a classification algorithm was applied to measure the localization error. Under anechoic conditions, averaged errors in azimuth increased from 4.5° to 19° with RMS errors ranging from 6.4° to 26.7° as model frequency increased from 300 to 3000 Hz. The low-frequency model performance using short speech sound was notably better than the generalized cross-correlation model. Two types of room reverberations were then introduced to simulate difficult listening conditions. Model performance under reverberation was more resilient at low frequencies than at high frequencies. Overall, our study presented a spiral model for rapidly predicting horizontal locations of concurrent sound that is suitable for real-world scenarios. 
    more » « less
  4. none (Ed.)
    SUMMARY The geophysical detection of magma bodies and the estimation of the dimensions, physical properties and the volume fraction of each phase composing the magma is required to improve the forecasting of volcanic hazards and to understand transcrustal magmatism. We develop an analytical model to calculate P waves velocity in a three-phase magma consisting of crystals and gas bubbles suspended in a viscous melt. We apply our model to calculate the speed of sound as a function of the temperature in three magmas with different chemical compositions, representative of the diversity that is encountered in arc magmatism. The model employs the coupled phase theory that explicitly accounts for the exchanges of momentum and heat between the phases. We show that the speed of sound varies nonlinearly with the frequency of an acoustic perturbation between two theoretical bounds. The dispersion of the sound in a magma results from the exchange of heat between the melt and the dispersed phases that affects the magnitude of their thermal expansions. The lower bound of the sound speed occurs at low frequencies for which all the constituents can be considered in thermal equilibrium, whereas the upper bound occurs at high frequencies for which the exchange of heat between the phases may be neglected. The presence of gas in a magma produces a sharp decrease in the velocity of compressional waves and generates conditions in which the dispersion of the sound is significant at the frequencies usually considered in geophysics. Finally, we compare the estimates of our model with the ones from published relationships. Differences are largest at higher frequencies and are <10 per cent for typical magma. 
    more » « less
  5. null (Ed.)
    We utilize a cost-effective frequency-domain fluorescence lifetime imaging microscope to measure the phase lifetime of mTFP1 in mTFP1-mVenus fluorescence resonance energy transfer (FRET) constructs relevant to the VinTS molecular tension probe. Our data were collected at 15 modulation frequencies ω/2π selected between 14 and 70 MHz. The lifetime of mTFP1 was τ D = 3.11 ± 0.02 ns in the absence of acceptor. For modulation frequencies, ω, such that (ω · τ D ) < 1.1, the phase lifetime of mTFP1in the presence of acceptor (mVenus), τ ϕ D A , was directly related to the amplitude-weighted lifetime τ a v e D A inferred from the known FRET efficiency ( E FRET true ) of the constructs. A linear fit to a plot of ( ω · τ ϕ D A )   v s .   ( ω · τ a v e D A )   yielded a slope of 0.79 ± 0.05 and intercept of 0.095 ± 0.029 (R 2 = 0.952). Thus, our results suggest that a linear relationship exists between the apparent E FRET app based on the measured phase lifetime and E FRET true for frequencies such that (ω · τ D ) < 1.1. We had previously reported a similar relationship between E FRET app and E FRET true at 42 MHz. Our current results provide additional evidence in support of this observation, but further investigation is still required to fully characterize these results. A direct relationship between τ ϕ D A and τ a v e D A has the potential to simplify significantly data acquisition and interpretation in fluorescence lifetime measurements of FRET constructs. 
    more » « less