skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimum thermal conductivity in the context of diffuson -mediated thermal transport
A model for the thermal conductivity of bulk solids is proposed in the limit of diffusive transport mediated by diffusons as opposed to phonons. This diffusive thermal conductivity, κ diff , is determined by the average energy of the vibrational density of states, ℏ ω avg , and the number density of atoms, n . Furthermore, κ diff is suggested as an appropriate estimate of the minimum thermal conductivity for complex materials, such that (at high temperatures): . A heuristic finding of this study is that the experimental ω avg is highly correlated with the Debye temperature, allowing κ diff to be estimated from the longitudinal and transverse speeds of sound: . Using this equation to estimate κ min gives values 37% lower than the widely-used Cahill result and 18% lower than the Clarke model for κ min , on average. This model of diffuson-mediated thermal conductivity may thus help explain experimental results of ultralow thermal conductivity.  more » « less
Award ID(s):
1729594 1729487
PAR ID:
10079408
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Energy & Environmental Science
Volume:
11
Issue:
3
ISSN:
1754-5692
Page Range / eLocation ID:
609 to 616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Silicon nitride (Si3N4) is a promising substrate for high-power electronics due to its superior mechanical properties and potential outstanding thermal conductivity (κ). As experiments keep pushing the upper limit of κ of Si3N4, it is believed that it can reach 450 W/mK, similar to SiC, based on classical models and molecular dynamics simulations. In this work, we reveal from first principles that the theoretical κ upper limits of β-Si3N4 are only 169 and 57 W/mK along the c and a axes at room temperature, respectively. Those of α-Si3N4 are about 116 and 87 W/mK, respectively. The predicted temperature-dependent κ matches well with the highest available experimental data, which supports the accuracy of our calculations, and suggests that the κ upper limit of Si3N4 has already been reached in the experiment. Compared to other promising semiconductors (e.g., SiC, AlN, and GaN), Si3N4 has a much lower κ than expected even though the chemical bonding and mechanical strengths are close or even stronger. We find the underlying reason is that Si3N4 has much lower phonon lifetimes and mean free paths (<0.5 μm) due to the larger three-phonon scattering phase space and stronger anharmonicity. Interestingly, we find that the larger unit cell (with more basis atoms) that leads to a smaller fraction of acoustic phonons is not the reason for lower κ. Grain size-dependent κ indicates that the grain boundary scattering plays a negligible role in most experimental samples. This work clarifies the theoretical κ upper limits of Si3N4 and can guide experimental research. 
    more » « less
  2. Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched10B or11B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications. 
    more » « less
  3. The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity κ on system length L, i.e., a κ-L maximum. However, such behavior has rarely been observed. In this work, we conduct extensive non-equilibrium molecular dynamics (NEMD) simulations, using the LAMMPS package, on both periodic superlattices (SLs) and aperiodic random multilayers (RMLs) constructed from Si/Ge and Lennard-Jones materials. By systematically varying acoustic contrast, interatomic bond strength, and average layer thickness, we examine the interplay between coherent and incoherent phonon transport in these systems. Our two-phonon model decomposition reveals that coherent phonons alone consistently exhibit a strong nonmonotonic κ-L. This localization signature is often masked by the diffusive, monotonically increasing contribution from incoherent phonons. We further extract the ballistic-limit mean free paths for both phonon types, and demonstrate that incoherent transport often dominates, thereby concealing localization effects. Our findings highlight the importance of decoupling coherent and incoherent phonon contributions in both simulations and experiments. This work provides new insights and design principles for achieving phonon Anderson localization in superlattice structures. 
    more » « less
  4. Structural defects in one-dimensional heat conductors couple longitudinal (stretching) and transverse (bending) vibrations. This coupling results in the scattering of longitudinal phonons to transverse phonons and backward. We show that the decay rate of longitudinal phonons due to this scattering scales with their frequencies as ω3/2 within the long wavelength limit (ω → 0), which is a more efficient scattering compared to the traditionally considered Rayleigh scattering within the longitudinal band (ω2). This scattering results in temperature-independent thermal conductivity, depending on the size as κ ∝ L1/3 for sufficiently long materials. This predicted length dependence is observed in nanowires, although the temperature dependence seen there is possibly because of deviations from pure one-dimensional behavior. The significant effect of interaction of longitudinal phonons with transverse phonons is consistent with the earlier observations of a substantial suppression of thermal energy transport by kinks, obviously leading to such interaction, although anharmonic interaction can also be significant. 
    more » « less
  5. High-throughput computational screening of materials with targeted thermal conductivity ( κ ) plays an important role in promoting the advancement of material design and enormous applications. The Slack model has been widely applied for the fast evaluation of κ with minimal time and resources, showing the potential capability of high-throughput screening of κ . However, after examining the Slack model on a large set of 353 materials, a huge discrepancy is found between the predicted κ and the correspondingly measured κ in experiments for some materials in addition to the generally overestimated κ by the Slack model. Thus, it is necessary to optimize the Slack model for efficiently and accurately evaluating κ . In this study, based on the high-throughput comparison of the κ predicted by the Slack model using elastic properties and those measured in experiments, an optimized Slack model is proposed. As a result, the κ predicted by the optimized Slack model agrees reasonably with the κ measured in experiments, which is much better than the previous prediction. The optimized Slack model proposed in this study can be used for further high-throughput computational evaluation of κ , which would be helpful for finding materials of ultrahigh or ultralow κ with broad applications. 
    more » « less