Title: Calculating Canopy Stomatal Conductance from Eddy Covariance Measurements, in Light of the Energy Budget Closure Problem
Canopy stomatal conductance (gsV) is commonly estimated from eddy covariance (EC) measurements of latent heat flux (LE) by inverting the Penman-Monteith (PM) equation. That method implicitly represents the sensible heat flux (H) as the residual of all other terms in the site energy budget – even though H is measured at least as accurately as LE at every EC site while the rest of the energy budget almost never is. We argue that gsV should instead be calculated from EC measurements of both H and LE, using the flux-gradient formulation that defines conductance and underlies the PM equation. The flux-gradient formulation dispenses with unnecessary assumptions, is conceptually simpler, and provides more accurate values of gsV for all plausible scenarios in which the measured energy budget fails to close, as is common at EC sites. The PM equation, on the other hand, contributes biases and erroneous spatial and temporal patterns to gsV, skewing its relationships with drivers such as light and vapor pressure deficit. To minimize the impact of the energy budget closure problem on the PM equation, it was previously proposed that the eddy fluxes should be corrected to close the long-term energy budget while preserving the Bowen ratio (B = H/LE). We show that such a flux correction does not fully remedy the PM equation but should produce accurate values of gsV when combined with the flux-gradient formulation. more »« less
Wehr, Richard; Saleska, Scott R.
(, Biogeosciences)
null
(Ed.)
Abstract. Canopy stomatal conductance is commonly estimated fromeddy covariance measurements of the latent heat flux (LE) by inverting thePenman–Monteith equation. That method ignores eddy covariance measurementsof the sensible heat flux (H) and instead calculates H implicitly as theresidual of all other terms in the site energy budget. Here we show thatcanopy stomatal conductance is more accurately calculated from eddy covariance (EC)measurements of both H and LE using the flux–gradient equations that defineconductance and underlie the Penman–Monteith equation, especially when thesite energy budget fails to close due to pervasive biases in the eddy fluxesand/or the available energy. The flux–gradient formulation dispenses withunnecessary assumptions, is conceptually simpler, and is as or more accuratein all plausible scenarios. The inverted Penman–Monteith equation, on theother hand, contributes substantial biases and erroneous spatial andtemporal patterns to canopy stomatal conductance, skewing its relationshipswith drivers such as light and vapor pressure deficit.
Ramírez-Cuesta, Juan Miguel; Sánchez, Juan Manuel; Piqueras, José González; Montoya, Francisco; Pueyo, Ignacio Buesa; Intrigliolo, Diego S; Lopez-Urrea, Ramón
(, IEEE)
Crop evapotranspiration (ETc) measurement is usually performed by sophisticated sensors that require high technical knowledge and that are not economically affordable for most end users. The objective of this work was to evaluate the performance of a novel LI-710 sensor for measuring ETc on a pistachio orchard. This simplified and easy-to-use sensor applies the Eddy Covariance (EC) method to measure water vapor flux between the surface and the atmosphere, however, it is cheaper and less complex than traditional EC heat flux system. The LI-710 sensor was installed together to an EC tower and the measurements provided by both methodologies were compared. Initial results evidenced a good agreement in terms of the evaluated meteorological variables, except for relative humidity, where higher discrepancies among sensors were observed. Regarding the sensible (H) and latent (LE) heat fluxes, the values measured by both methodologies were similar, with R2 values of 0.96 and 0.80; and RMSE values of 19 and 29 W m−2, respectively. These results suggest that LI-710 sensor can be a valid alternative to traditional EC systems for deriving ETc. However, LI-710 continues to have the fetch limitations presented in traditional methodologies, so future efforts should be paid to reduce this requirement increasing its usability in medium-small sized agricultural plots.
Abstract Top‐down entrainment shapes the vertical gradients of sensible heat, latent heat, and CO2fluxes, influencing the interpretation of eddy covariance (EC) measurements in the unstable atmospheric surface layer (ASL). Using large eddy simulations for convective boundary layer flows, we demonstrate that decreased temperature gradients across the entrainment zone increase entrainment fluxes by enhancing the entrainment velocity, amplifying the asymmetry between top‐down and bottom‐up flux contributions. These changes alter scalar flux profiles, causing flux divergence or convergence and leading to the breakdown of the constant flux layer assumption (CFLA) in the ASL. As a result, EC‐measured fluxes either underestimate or overestimate “true” surface fluxes during divergence or convergence phases, contributing to energy balance non‐closure. The varying degrees of the CFLA breakdown are a fundamental cause for the non‐closure issue. These findings highlight the underappreciated role of entrainment in interpreting EC fluxes, addressing non‐closure, and understanding site‐to‐site variability in flux measurements.
Single point eddy covariance measurements of the Earth’s surface energy budget frequently identify an imbalance between available energy and turbulent heat fluxes. While this imbalance lacks a definitive explanation, it is nevertheless a persistent finding from single-site measurements; one with implications for atmospheric and ecosystem models. This has led to a push for intensive field campaigns with temporally and spatially distributed sensors to help identify the causes of energy balance non-closure. Here we present results from the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19)—an observational experiment designed to investigate how the Earth’s surface energy budget responds to scales of surface spatial heterogeneity over a forest ecosystem in northern Wisconsin. The campaign was conducted from June–October 2019, measuring eddy covariance (EC) surface energy fluxes using an array of 20 towers and a low-flying aircraft. Across the domain, energy balance residuals were found to be highest during the afternoon, coinciding with the period of surface heterogeneity-driven mesoscale motions. The magnitude of the residual varied across different sites in relation to the vegetation characteristics of each site. Both vegetation height and height variability showed positive relationships with the residual magnitude. During the seasonal transition from latent heat-dominated summer to sensible heat-dominated fall the magnitude of the energy balance residual steadily decreased, but the energy balance ratio remained constant at 0.8. This was due to the different components of the energy balance equation shifting proportionally, suggesting a common cause of non-closure across the two seasons. Additionally, we tested the effectiveness of measuring energy balance using spatial EC. Spatial EC, whereby the covariance is calculated based on deviations from spatial means, has been proposed as a potential way to reduce energy balance residuals by incorporating contributions from mesoscale motions better than single-site, temporal EC. Here we tested several variations of spatial EC with the CHEESEHEAD19 dataset but found little to no improvement to energy balance closure, which we attribute in part to the challenging measurement requirements of spatial EC.
Bosse, Anthony; Fer, Ilker; Lilly, Jonathan M.; Søiland, Henrik
(, Scientific Reports)
Abstract The Lofoten Basin is the largest oceanic reservoir of heat in the Nordic Seas, and the site of important heat fluxes to the atmosphere. An intense permanent anticyclone in the basin impacts the regional hydrography, energetics, and ecosystem. Repeated sampling of this Lofoten Basin Eddy from dedicated cruises, autonomous profiling gliders, and acoustically-tracked subsurface floats enables the documentation of its dynamics and energetics over the course of 15 months. The eddy core, in nearly solid-body rotation, exhibits an unusually low vertical vorticity close to the local inertial frequency and important strain rates at the periphery. Subsurface floats as deep as 800 m are trapped within the core for their entire deployment duration (up to 15 months). The potential vorticity is reduced in the core by two orders of magnitude relative to the surroundings, creating a barrier. In the winter, this barrier weakens and lateral exchanges and heat flux between the eddy and the surroundings increase, apparently the result of dynamical instabilities and a possible eddy merger. Based on a simple energy budget, the dissipation timescale for the eddy energy is three years, during which wintertime convection seasonally modulates potential and kinetic energy.
Wehr, Richard, and Saleska, Scott R. Calculating Canopy Stomatal Conductance from Eddy Covariance Measurements, in Light of the Energy Budget Closure Problem. Retrieved from https://par.nsf.gov/biblio/10176566. Biogeosciences discussions . Web. doi:https://doi.org/10.5194/bg-2020-154.
Wehr, Richard, & Saleska, Scott R. Calculating Canopy Stomatal Conductance from Eddy Covariance Measurements, in Light of the Energy Budget Closure Problem. Biogeosciences discussions, (). Retrieved from https://par.nsf.gov/biblio/10176566. https://doi.org/https://doi.org/10.5194/bg-2020-154
@article{osti_10176566,
place = {Country unknown/Code not available},
title = {Calculating Canopy Stomatal Conductance from Eddy Covariance Measurements, in Light of the Energy Budget Closure Problem},
url = {https://par.nsf.gov/biblio/10176566},
DOI = {https://doi.org/10.5194/bg-2020-154},
abstractNote = {Canopy stomatal conductance (gsV) is commonly estimated from eddy covariance (EC) measurements of latent heat flux (LE) by inverting the Penman-Monteith (PM) equation. That method implicitly represents the sensible heat flux (H) as the residual of all other terms in the site energy budget – even though H is measured at least as accurately as LE at every EC site while the rest of the energy budget almost never is. We argue that gsV should instead be calculated from EC measurements of both H and LE, using the flux-gradient formulation that defines conductance and underlies the PM equation. The flux-gradient formulation dispenses with unnecessary assumptions, is conceptually simpler, and provides more accurate values of gsV for all plausible scenarios in which the measured energy budget fails to close, as is common at EC sites. The PM equation, on the other hand, contributes biases and erroneous spatial and temporal patterns to gsV, skewing its relationships with drivers such as light and vapor pressure deficit. To minimize the impact of the energy budget closure problem on the PM equation, it was previously proposed that the eddy fluxes should be corrected to close the long-term energy budget while preserving the Bowen ratio (B = H/LE). We show that such a flux correction does not fully remedy the PM equation but should produce accurate values of gsV when combined with the flux-gradient formulation.},
journal = {Biogeosciences discussions},
author = {Wehr, Richard and Saleska, Scott R.},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.