skip to main content


Title: Simultaneous detection of ozone and nitrogen dioxide by oxygen anion chemical ionization mass spectrometry: a fast-time-response sensor suitable for eddy covariance measurements
Abstract. We report on the development, characterization, and fielddeployment of a fast-time-response sensor for measuring ozone (O3) andnitrogen dioxide (NO2) concentrations utilizing chemical ionizationtime-of-flight mass spectrometry (CI-ToFMS) with oxygen anion(O2-) reagent ion chemistry. Wedemonstrate that the oxygen anion chemical ionization mass spectrometer(Ox-CIMS) is highly sensitive to both O3 (180 counts s−1 pptv−1) and NO2 (97 counts s−1 pptv−1), corresponding todetection limits (3σ, 1 s averages) of 13 and 9.9 pptv,respectively. In both cases, the detection threshold is limited by themagnitude and variability in the background determination. The short-termprecision (1 s averages) is better than 0.3 % at 10 ppbv O3 and 4 %at 10 pptv NO2. We demonstrate that the sensitivity of the O3measurement to fluctuations in ambient water vapor and carbon dioxide isnegligible for typical conditions encountered in the troposphere. Theapplication of the Ox-CIMS to the measurement of O3 vertical fluxesover the coastal ocean, via eddy covariance (EC), was tested during the summer of2018 at Scripps Pier, La Jolla, CA. The observed mean ozone depositionvelocity (vd(O3)) was 0.013 cm s−1 with a campaign ensemblelimit of detection (LOD) of 0.0027 cm s−1 at the 95 % confidencelevel, from each 27 min sampling period LOD. The campaign mean and 1standard deviation range of O3 mixing ratios was 41.2±10.1 ppbv. Several fast ozone titration events from local NO emissions weresampled where unit conversion of O3 to NO2 was observed,highlighting instrument utility as a total odd-oxygen (Ox=O3+NO2) sensor. The demonstrated precision, sensitivity, and timeresolution of this instrument highlight its potential for directmeasurements of O3 ocean–atmosphere and biosphere–atmosphere exchangefrom both stationary and mobile sampling platforms.  more » « less
Award ID(s):
1829667
NSF-PAR ID:
10176654
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
13
Issue:
4
ISSN:
1867-8548
Page Range / eLocation ID:
1887 to 1907
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We investigated the ozone pollution trend and its sensitivity to keyprecursors from 1990 to 2015 in the United States using long-term EPA Air Quality System (AQS)observations and mesoscale simulations. The modeling system, a coupledregional climate–air quality model (CWRF-CMAQ; Climate-Weather Research Forecast andthe Community Multiscale Air Quality), captured well the summersurface ozone pollution during the past decades, having a mean slope oflinear regression with AQS observations of ∼0.75. While theAQS network has limited spatial coverage and measures only a few keychemical species, CWRF-CMAQ provides comprehensive simulations to enablea more rigorous study of the change in ozone pollution and chemicalsensitivity. Analysis of seasonal variations and diurnal cycle of ozoneobservations showed that peak ozone concentrations in the summer afternoondecreased ubiquitously across the United States, up to 0.5 ppbv yr−1 in majornon-attainment areas such as Los Angeles, while concentrations at certainhours such as the early morning and late afternoon increased slightly.Consistent with the AQS observations, CMAQ simulated a similar decreasingtrend of peak ozone concentrations in the afternoon, up to 0.4 ppbv yr−1, andincreasing ozone trends in the early morning and late afternoon. A monotonicallydecreasing trend (up to 0.5 ppbv yr−1) in the odd oxygen (Ox=O3+NO2) concentrations are simulated by CMAQ at all daytime hours.This result suggests that the increased ozone in the early morning and lateafternoon was likely caused by reduced NO–O3 titration, driven bycontinuous anthropogenic NOx emission reductions in the past decades.Furthermore, the CMAQ simulations revealed a shift in chemical regimes ofozone photochemical production. From 1990 to 2015, surface ozone productionin some metropolitan areas, such as Baltimore, has transited from aVOC-sensitive environment (>50 % probability) to aNOx-sensitive regime. Our results demonstrated that the long-termCWRF-CMAQ simulations can provide detailed information of the ozonechemistry evolution under a changing climate and may partially explain theUS ozone pollution responses to regional and national regulations. 
    more » « less
  2. Abstract. Chemical ionization massspectrometry (CIMS) instruments routinely detect hundreds of oxidized organic compoundsin the atmosphere. A major limitation of these instruments is the uncertaintyin their sensitivity to many of the detected ions. We describe thedevelopment of a new high-resolution time-of-flight chemical ionization massspectrometer that operates in one of two ionization modes: using eitherammonium ion ligand-switching reactions such as for NH4+ CIMS orproton transfer reactions such as for proton-transfer-reaction massspectrometer (PTR-MS). Switching between the modes can be done within 2 min.The NH4+ CIMS mode of the new instrument has sensitivities of upto 67 000 dcps ppbv−1 (duty-cycle-corrected ion counts per second perpart per billion by volume) and detection limits between 1 and 60 pptv at2σ for a 1 s integration time for numerous oxygenated volatileorganic compounds. We present a mass spectrometric voltage scanning procedurebased on collision-induced dissociation that allows us to determine thestability of ammonium-organic ions detected by the NH4+ CIMS instrument.Using this procedure, we can effectively constrain the sensitivity of theammonia chemical ionization mass spectrometer to a wide range of detectedoxidized volatile organic compounds for which no calibration standards exist.We demonstrate the application of this procedure by quantifying thecomposition of secondary organic aerosols in a series of laboratoryexperiments.

     
    more » « less
  3. null (Ed.)
    Abstract. A fast-response (10 Hz) chemiluminescence detector forozone (O3) was used to determine O3 fluxes using the eddy covariancetechnique at the Penlee Point Atmospheric Observatory (PPAO) on the southcoast of the UK during April and May 2018. The median O3 flux was −0.132 mg m−2 h−1 (0.018 ppbv m s−1),corresponding to a deposition velocity of 0.037 cm s−1(interquartile range 0.017–0.065 cm s−1) – similar to thehigher values previously reported for open-ocean flux measurements but notas high as some other coastal results. We demonstrate that a typical singleflux observation was above the 2σ limit of detection but hadconsiderable uncertainty. The median 2σ uncertainty of depositionvelocity was 0.031 cm s−1 for each 20 min period, whichreduces with the square root of the sample size. Eddy covariance footprintanalysis of the site indicates that the flux footprint was predominantlyover water (> 96 %), varying with atmospheric stability and, toa lesser extent, with the tide. At very low wind speeds when the atmospherewas typically unstable, the observed ozone deposition velocity was elevated,most likely because the footprint contracted to include a greater landcontribution in these conditions. At moderate to high wind speeds whenatmospheric stability was near-neutral, the ozone deposition velocityincreased with wind speed and showed a linear dependence with frictionvelocity. This observed dependence on friction velocity (and therefore alsowind speed) is consistent with the predictions from the one-layer model ofFairall et al. (2007), which parameterisesthe oceanic deposition of ozone from the fundamental conservation equation,accounting for both ocean turbulence and near-surface chemical destruction,while assuming that chemical O3 destruction by iodide is distributed overdepth. In contrast to our observations, the deposition velocity predicted bythe recently developed two-layer model of Luhar et al. (2018) (whichconsiders iodide reactivity in both layers but with molecular diffusivitydominating over turbulent diffusivity in the first layer) shows no majordependence of deposition velocity on wind speed and underestimates themeasured deposition velocities. These results call for further investigationinto the mechanisms and control of oceanic O3 deposition. 
    more » « less
  4. Abstract. Nitrous acid (HONO) plays an important role in troposphericoxidation chemistry as it is a precursor to the hydroxyl radical (OH).Measurements of HONO have been difficult historically due to instrumentinterferences and difficulties in sampling and calibration. The traditionalcalibration method involves generation of HONO by reacting hydrogen chloridevapor with sodium nitrite followed by quantification by various methods(e.g., conversion of HONO to nitric oxide (NO) followed by chemiluminescencedetection). Alternatively, HONO can be generated photolytically in thegas phase by reacting NO with OH radicals generated by H2O photolysis.In this work, we describe and compare two photolytic HONO calibrationmethods that were used to calibrate an iodide adduct chemical ionizationmass spectrometer (CIMS). Both methods are based on the water vaporphotolysis method commonly used for OH and HO2 (known collectively asHOx) calibrations. The first method is an adaptation of the common chemicalactinometry HOx calibration method, in which HONO is calculated based onquantified values for [O3], [H2O], and [O2] and the absorptioncross sections for H2O and O2 at 184.9 nm. In the second, novelmethod HONO is prepared in mostly N2 ([O2]=0.040 %) and issimply quantified by measuring the NO2 formed by the reaction of NOwith HO2 generated by H2O photolysis. Both calibration methodswere used to prepare a wide range of HONO mixing ratios between∼400 and 8000 pptv. The uncertainty of the chemicalactinometric calibration is 27 % (2σ) and independent of HONOconcentration. The uncertainty of the NO2 proxy calibration isconcentration-dependent, limited by the uncertainty of the NO2measurements. The NO2 proxy calibration uncertainties (2σ)presented here range from 4.5 % to 24.4 % (at [HONO] =8000 pptv and[HONO] =630 pptv, respectively) with a 10 % uncertainty associatedwith a mixing ratio of ∼1600 pptv, typical of valuesobserved in urban areas at night. We also describe the potential applicationof the NO2 proxy method to calibrating HOx instruments (e.g., LIF,CIMS) at uncertainties below 15 % (2σ). 
    more » « less
  5. null (Ed.)
    Abstract. During the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET) campaign from 21 July to 3 August 2016,field experiments on leaf-level trace gas exchange of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) were conducted for thefirst time on the native American tree species Pinus strobus (eastern white pine), Acer rubrum (redmaple), Populus grandidentata (bigtooth aspen), and Quercus rubra (red oak) in a temperate hardwood forest inMichigan, USA. We measured the leaf-level trace gas exchange rates andinvestigated the existence of an NO2 compensation point, hypothesizedbased on a comparison of a previously observed average diurnal cycle ofNOx (NO2+NO) concentrations with that simulated using amulti-layer canopy exchange model. Known amounts of trace gases wereintroduced into a tree branch enclosure and a paired blank referenceenclosure. The trace gas concentrations before and after the enclosures weremeasured, as well as the enclosed leaf area (single-sided) and gas flow rate to obtain the trace gas fluxes with respect to leaf surface. There was nodetectable NO uptake for all tree types. The foliar NO2 and O3uptake largely followed a diurnal cycle, correlating with that of the leafstomatal conductance. NO2 and O3 fluxes were driven by theirconcentration gradient from ambient to leaf internal space. The NO2 loss rate at the leaf surface, equivalently the foliar NO2 deposition velocity toward the leaf surface, ranged from 0 to 3.6 mm s−1 for bigtooth aspen and from 0 to 0.76 mm s−1 for red oak, both of which are∼90 % of the expected values based on the stomatalconductance of water. The deposition velocities for red maple and white pineranged from 0.3 to 1.6 and from 0.01 to 1.1 mm s−1, respectively, and were lower than predicted from the stomatal conductance, implying amesophyll resistance to the uptake. Additionally, for white pine, theextrapolated velocity at zero stomatal conductance was 0.4±0.08 mm s−1, indicating a non-stomatal uptake pathway. The NO2compensation point was ≤60 ppt for all four tree species andindistinguishable from zero at the 95 % confidence level. This agrees withrecent reports for several European and California tree species butcontradicts some earlier experimental results where the compensation pointswere found to be on the order of 1 ppb or higher. Given that the sampledtree types represent 80 %–90 % of the total leaf area at this site, theseresults negate the previously hypothesized important role of a leaf-scaleNO2 compensation point. Consequently, to reconcile these findings,further detailed comparisons between the observed and simulated in- and above-canopy NOx concentrations and the leaf- and canopy-scaleNOx fluxes, using the multi-layer canopy exchange model withconsideration of the leaf-scale NOx deposition velocities as well asstomatal conductances reported here, are recommended. 
    more » « less