The summertime surface ozone (O3) concentrations over Southeast Michigan (SEMI) often exceed 70 ppbv. However, the associated O3 formation regime is still not well known. In this study, we examined the chemical drivers of O3 exceedances in SEMI, based on the Michigan-Ontario Ozone Source Experiment (MOOSE) field campaign during the period of May 20 – June 30, 2021. We employed a zero-dimensional (0-D) box model, which was constrained by measurements of meteorology and trace gas concentrations during MOOSE. Our model simulations demonstrated that the formaldehyde to nitrogen dioxide ratio (HCHO/NO2) for the transition between the VOC- and NOx-limited O3 production regimes was 3.0 ± 0.3 (mean ± 1σ) in SEMI. The midday (12:00-16:00) averaged HCHO/NO2 ratio during MOOSE was 1.62 ± 1.03, suggesting that O3 production in SEMI was likely limited by VOC emissions. Our study has significant implications for air quality policy and the design of effective O3 pollution control strategies through ground-based HCHO/NO2 measurements and model simulations.
more »
« less
Simultaneous detection of ozone and nitrogen dioxide by oxygen anion chemical ionization mass spectrometry: a fast-time-response sensor suitable for eddy covariance measurements
Abstract. We report on the development, characterization, and fielddeployment of a fast-time-response sensor for measuring ozone (O3) andnitrogen dioxide (NO2) concentrations utilizing chemical ionizationtime-of-flight mass spectrometry (CI-ToFMS) with oxygen anion(O2-) reagent ion chemistry. Wedemonstrate that the oxygen anion chemical ionization mass spectrometer(Ox-CIMS) is highly sensitive to both O3 (180 counts s−1 pptv−1) and NO2 (97 counts s−1 pptv−1), corresponding todetection limits (3σ, 1 s averages) of 13 and 9.9 pptv,respectively. In both cases, the detection threshold is limited by themagnitude and variability in the background determination. The short-termprecision (1 s averages) is better than 0.3 % at 10 ppbv O3 and 4 %at 10 pptv NO2. We demonstrate that the sensitivity of the O3measurement to fluctuations in ambient water vapor and carbon dioxide isnegligible for typical conditions encountered in the troposphere. Theapplication of the Ox-CIMS to the measurement of O3 vertical fluxesover the coastal ocean, via eddy covariance (EC), was tested during the summer of2018 at Scripps Pier, La Jolla, CA. The observed mean ozone depositionvelocity (vd(O3)) was 0.013 cm s−1 with a campaign ensemblelimit of detection (LOD) of 0.0027 cm s−1 at the 95 % confidencelevel, from each 27 min sampling period LOD. The campaign mean and 1standard deviation range of O3 mixing ratios was 41.2±10.1 ppbv. Several fast ozone titration events from local NO emissions weresampled where unit conversion of O3 to NO2 was observed,highlighting instrument utility as a total odd-oxygen (Ox=O3+NO2) sensor. The demonstrated precision, sensitivity, and timeresolution of this instrument highlight its potential for directmeasurements of O3 ocean–atmosphere and biosphere–atmosphere exchangefrom both stationary and mobile sampling platforms.
more »
« less
- Award ID(s):
- 1829667
- PAR ID:
- 10176654
- Date Published:
- Journal Name:
- Atmospheric Measurement Techniques
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 1867-8548
- Page Range / eLocation ID:
- 1887 to 1907
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The air–sea exchange of ozone (O3) is controlled by chemistry involving halogens, dissolved organic carbon, and sulfur in the sea surface microlayer. Calculations also indicate faster ozone photolysis at aqueous surfaces, but the role of clouds as an ozone sink is currently not well established. Fast-response ozone sensors offer opportunities to measure eddy covariance (EC) ozone fluxes in the marine boundary layer. However, intercomparisons of fast airborne O3 sensors and EC O3 fluxes measured on aircraft have not been conducted before. In April 2022, the Technological Innovation Into Iodine and GV Environmental Research (TI3GER) field campaign deployed three fast ozone sensors (gas chemiluminescence and a combination of UV absorption with coumarin chemiluminescence detection, CID) together with a fast water vapor sensor and anemometer to study iodine chemistry in the troposphere and stratosphere over Colorado and over the Pacific Ocean near Hawaii and Alaska. Here, we present an instrument comparison between the NCAR Fast O3 instrument (FO3, gas-phase CID) and two KIT Fast AIRborne Ozone instruments (FAIRO, UV absorption and coumarin CID). The sensors have comparable precision < 0.4 % Hz−0.5 (0.15 ppbv Hz−0.5), and ozone volume mixing ratios (VMRs) generally agreed within 2 % over a wide range of environmental conditions: 10 < O3 < 1000 ppbv, below detection < NOx < 7 ppbv, and 2 ppmv < H2O < 4 % VMR. Both instrument designs are demonstrated to be suitable for EC flux measurements and were able to detect O3 fluxes with exchange velocities (defined as positive for upward) as slow as −0.010 ± 0.004 cm s−1, which is in the lower range of previously reported measurements. Additionally, we present two case studies. In one, the direction of ozone and water vapor fluxes was reversed (vO3 = +0.134 ± 0.005 cm s−1), suggesting that overhead evaporating clouds could be a strong ozone sink. Further work is needed to better understand the role of clouds as a possibly widespread sink of ozone in the remote marine boundary layer. In the second case study, vO3 values are negative (varying by a factor of 6–10 from −0.036 ± 0.006 to −0.003 ± 0.004 cm s−1), while the water vapor fluxes are consistently positive due to evaporation from the ocean surface and spatially homogeneous. This case study demonstrates that the processes governing ozone and water vapor fluxes can become decoupled and illustrates the need to elucidate possible drivers (physical, chemical, or biological) of the variability in ozone exchange velocities on fine spatial scales (∼ 20 km) over remote oceans.more » « less
-
Abstract. We investigated the ozone pollution trend and its sensitivity to keyprecursors from 1990 to 2015 in the United States using long-term EPA Air Quality System (AQS)observations and mesoscale simulations. The modeling system, a coupledregional climate–air quality model (CWRF-CMAQ; Climate-Weather Research Forecast andthe Community Multiscale Air Quality), captured well the summersurface ozone pollution during the past decades, having a mean slope oflinear regression with AQS observations of ∼0.75. While theAQS network has limited spatial coverage and measures only a few keychemical species, CWRF-CMAQ provides comprehensive simulations to enablea more rigorous study of the change in ozone pollution and chemicalsensitivity. Analysis of seasonal variations and diurnal cycle of ozoneobservations showed that peak ozone concentrations in the summer afternoondecreased ubiquitously across the United States, up to 0.5 ppbv yr−1 in majornon-attainment areas such as Los Angeles, while concentrations at certainhours such as the early morning and late afternoon increased slightly.Consistent with the AQS observations, CMAQ simulated a similar decreasingtrend of peak ozone concentrations in the afternoon, up to 0.4 ppbv yr−1, andincreasing ozone trends in the early morning and late afternoon. A monotonicallydecreasing trend (up to 0.5 ppbv yr−1) in the odd oxygen (Ox=O3+NO2) concentrations are simulated by CMAQ at all daytime hours.This result suggests that the increased ozone in the early morning and lateafternoon was likely caused by reduced NO–O3 titration, driven bycontinuous anthropogenic NOx emission reductions in the past decades.Furthermore, the CMAQ simulations revealed a shift in chemical regimes ofozone photochemical production. From 1990 to 2015, surface ozone productionin some metropolitan areas, such as Baltimore, has transited from aVOC-sensitive environment (>50 % probability) to aNOx-sensitive regime. Our results demonstrated that the long-termCWRF-CMAQ simulations can provide detailed information of the ozonechemistry evolution under a changing climate and may partially explain theUS ozone pollution responses to regional and national regulations.more » « less
-
Abstract. Nitrous acid (HONO) plays an important role in troposphericoxidation chemistry as it is a precursor to the hydroxyl radical (OH).Measurements of HONO have been difficult historically due to instrumentinterferences and difficulties in sampling and calibration. The traditionalcalibration method involves generation of HONO by reacting hydrogen chloridevapor with sodium nitrite followed by quantification by various methods(e.g., conversion of HONO to nitric oxide (NO) followed by chemiluminescencedetection). Alternatively, HONO can be generated photolytically in thegas phase by reacting NO with OH radicals generated by H2O photolysis.In this work, we describe and compare two photolytic HONO calibrationmethods that were used to calibrate an iodide adduct chemical ionizationmass spectrometer (CIMS). Both methods are based on the water vaporphotolysis method commonly used for OH and HO2 (known collectively asHOx) calibrations. The first method is an adaptation of the common chemicalactinometry HOx calibration method, in which HONO is calculated based onquantified values for [O3], [H2O], and [O2] and the absorptioncross sections for H2O and O2 at 184.9 nm. In the second, novelmethod HONO is prepared in mostly N2 ([O2]=0.040 %) and issimply quantified by measuring the NO2 formed by the reaction of NOwith HO2 generated by H2O photolysis. Both calibration methodswere used to prepare a wide range of HONO mixing ratios between∼400 and 8000 pptv. The uncertainty of the chemicalactinometric calibration is 27 % (2σ) and independent of HONOconcentration. The uncertainty of the NO2 proxy calibration isconcentration-dependent, limited by the uncertainty of the NO2measurements. The NO2 proxy calibration uncertainties (2σ)presented here range from 4.5 % to 24.4 % (at [HONO] =8000 pptv and[HONO] =630 pptv, respectively) with a 10 % uncertainty associatedwith a mixing ratio of ∼1600 pptv, typical of valuesobserved in urban areas at night. We also describe the potential applicationof the NO2 proxy method to calibrating HOx instruments (e.g., LIF,CIMS) at uncertainties below 15 % (2σ).more » « less
-
Reactive organic carbon (ROC) is diverse in its speciation, functionalization, and volatility, with varying implications for ozone production and secondary organic aerosol formation and growth. Chemical ionization mass spectrometry (CIMS) approaches can provide in situ ROC observations, and the CIMS reagent ion controls the detectable ROC species. To expand the range of detectable ROC, we describe a method for switching between the reagent ions NH4+ and H3O+ in a Vocus chemical ionization time-of-flight mass spectrometer (Vocus-CI-ToFMS). We describe optimization of ion–molecule reactor conditions for both reagent ions, at the same temperature, and compare the ability of NH4+ and H3O+ to detect a variety of volatile organic compounds (VOCs) and semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs), including oxygenates and organic sulfur compounds. Sensitivities are comparable to other similar instruments (up to ∼5 counts /s /pptv), with detection limits on the order of 1–10 s of pptv (1 s integration time). We report a method for characterizing and filtering periods of hysteresis following each reagent ion switch and compare use of reagent ions, persistent ambient ions, and a deuterated internal standard for diagnosing this hysteresis. We deploy NH4+/H3O+ reagent ion switching in a rural pine forest in central Colorado, US, and use our ambient measurements to compare the capabilities of NH4+ and H3O+ in the same instrument, without interferences from variation in instrument and inlet designs. We find that H3O+ optimally detects reduced ROC species with high volatility, while NH4+ improves detection of functionalized ROC compounds, including organic nitrates and oxygenated SVOCs and IVOCs that are readily fragmented by H3O+.more » « less
An official website of the United States government

