skip to main content

Title: Wood creep data collection and unbiased parameter identification of compliance functions
Abstract Rising global emission have led to a renewed popularity of timber in building design, including timber-concrete tall buildings up to 18 stories. In spite of this surge in wood construction, there remains a gap in understanding of long-term structural behavior, particularly wood creep. Unlike concrete, code prescriptions for wood design are lacking in robust estimates for structural shortening. Models for wood creep have become increasingly necessary due to the potential for unforeseen shortening, especially with respect to differential shortening. These effects can have serious impacts as timber building heights continue to grow. This study lays the groundwork for wood compliance prediction models for use in timber design. A thorough review of wood creep studies was conducted and viable experimental results were compiled into a database. Studies were chosen based on correlation of experimental conditions with a realistic building environment. An unbiased parameter identification method, originally applied to concrete prediction models, was used to fit multiple compliance functions to each data curve. Based on individual curve fittings, statistical analysis was performed to determine the best fit function and average parameter values for the collective database. A power law trend in wood creep, with lognormal parameter distribution, was confirmed by the more » results. « less
Authors:
; ; ;
Award ID(s):
1762757
Publication Date:
NSF-PAR ID:
10176857
Journal Name:
Holzforschung
Volume:
0
Issue:
0
ISSN:
0018-3830
Sponsoring Org:
National Science Foundation
More Like this
  1. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and naillaminated timber wood inlaysmore »inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry.« less
  2. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and nail-laminated timber wood inlaysmore »inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry.« less
  3. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and nail-laminated timber wood inlaysmore »inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry.« less
  4. Blass, Hans (Ed.)
    Wood buildings in North American has been predominantly constructed using light-framed wood systems since early 1900’s, with only limited exception of heavy timber construction in some non-residential applications. This situation is likely to change in the future with the growing acceptance of mass timber construction in the region. In fact, a number of mass timber buildings have been constructed in recent years in the U.S. and Canada, including low- to mid-rise mixed-use buildings (e.g. UMass Student Center, T3 building) and tall towers (e.g. Brocks Commons at UBC). Most of these buildings utilized cross laminated timber (CLT) or nail laminated timber (NLT) floors and heavy timber framing systems to support gravity loads, and a non-wood lateral system such as concrete shear walls or a braced steel frame to resist wind and seismic loads. Although CLT material and glulam products have been recognized in the U.S. and Canada (IBC (2018) and NBCC (2015), there is currently no mass timber lateral systems in the U.S. and only one system (platform style panelized CLT shear wall) in Canada that is currently recognized by the building codes. As a result, special design procedures and review/approval processes must be followed for any building intended to usemore »a mass timber lateral system. There is a need to promote codification of mass timber lateral systems in order to help further develop mass timber building market in North American. At the time of this paper, there has been an on-going effort to devel-op seismic design parameters for panelized CLT shear walls in the U.S. (ref) following the FEMA P695 procedure for platform construction. The other lateral system that at-tracted significant attention and research resources is post-tensioned CLT rocking wall system, which has the potential to be applicable to balloon framed low-rise to tall wood buildings. This paper will focus on recent research development on CLT rocking wall system in the U.S. and the effort to develop a seismic design procedure for this system for inclusion in the NDS Special Design Provisions for Wind and Seismic (SPDWS)(2008). While the expensive and time consuming process of the FEMA P695 process would provide the ability to use the equivalent lateral force method for design purposes, this path is not part of the discussion included here.« less
  5. With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). With its relatively light weight, there is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. This paper introduces the NHERI Tallwood Project recentely funded by the U.S. National Science Fundation to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, full-scale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shakingmore »table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.« less