- Award ID(s):
- 1711850
- PAR ID:
- 10177071
- Date Published:
- Journal Name:
- International journal of electrical power energy systems
- Volume:
- 118
- ISSN:
- 0142-0615
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
As the number of distributed energy resources participating in power networks increases, it becomes increasingly more important to actively manage network constraints to ensure safe operation. One proposed method that has gained significant attention and implementation, particularly in Australia, is the use of dynamic operating envelopes. Operating envelopes represent net export limits set by the system operator on every node in the distribution network that change as system conditions change. They are calculated using an optimal power flow problem, frequently using a linearization or relaxation of the nonlinear power flow equations. This paper presents two case studies and some numerical analysis to explain why a second order cone relaxation of the power flow equations will lead to ineffective operating envelopes. A modification to the objective function which allows the second order cone relaxation to nearly recover the solution to the nonlinear formulation is also presented.more » « less
-
This paper investigates reconfigurable intelligent surface (RIS)-assisted secure multiuser communication systems in the presence of hardware impairments (HIs) at the RIS and the transceivers. We jointly optimize the beamforming vectors at the base station (BS) and the phase shifts of the reflecting elements at the RIS so as to maximize the weighted minimum approximate ergodic secrecy rate (WMAESR), subject to the transmission power constraints at the BS and unit-modulus constraints at the RIS. To solve the formulated optimization problem, we first decouple it into two tractable subproblems and then use the block coordinate descent (BCD) method to alternately optimize the subproblems. Two different methods are proposed to solve the two obtained subproblems. The first method transforms each subproblem into a second order cone programming (SOCP) problem by invoking the penalty convex–concave procedure (CCP) method and the closed-form fractional programming (FP) criterion, and then directly solves them by using CVX. The second method leverages the minorization-maximization (MM) algorithm. Specifically, we first derive a concave approximation function, which is a lower bound of the original objective function, and then the two subproblems are transformed into two simple surrogate problems that admit closed-form solutions. Simulation results verify the performance gains of the proposed robust transmission methods over existing non-robust designs. In addition, the MM algorithm is shown to have much lower complexity than the SOCP-based algorithm.more » « less
-
null (Ed.)Contingency Constrained Optimal Power Flow (CCOPF) differs from traditional Optimal Power Flow (OPF) because its generation dispatch is planned to work with state variables between constraint limits, considering a specific contingency. When it is not desired to have changes in the power dispatch after the contingency occurs, the CCOPF is studied with a preventive perspective, whereas when the contingency occurs and the power dispatch needs to change to operate the system between limits in the post-contingency state, the problem is studied with a corrective perspective. As current power system software tools mainly focus on the traditional OPF problem, having the means to solve CCOPF will benefit power systems planning and operation. This paper presents a Quadratically Constrained Quadratic Programming (QCQP) formulation built within the matpower environment as a solution strategy to the preventive CCOPF. Moreover, an extended OPF model that forces the network to meet all constraints under contingency is proposed as a strategy to find the power dispatch solution for the corrective CCOPF. Validation is made on the IEEE 14-bus test system including photovoltaic generation in one simulation case. It was found that in the QCQP formulation, the power dispatch calculated barely differs in both pre- and post-contingency scenarios while in the OPF extended power network, node voltage values in both pre- and post-contingency scenarios are equal in spite of having different power dispatch for each scenario. This suggests that both the QCQP and the extended OPF formulations proposed, could be implemented in power system software tools in order to solve CCOPF problems from a preventive or corrective perspective.more » « less
-
In many areas of constrained optimization, representing all possible constraints that give rise to an accurate feasible region can be difficult and computationally prohibitive for online use. Satisfying feasibility constraints becomes more challenging in high-dimensional, non-convex regimes which are common in engineering applications. A prominent example that is explored in the manuscript is the security-constrained optimal power flow (SCOPF) problem, which minimizes power generation costs, while enforcing system feasibility under contingency failures in the transmission network. In its full form, this problem has been modeled as a nonlinear two-stage stochastic programming problem. In this work, we propose a hybrid structure that incorporates and takes advantage of both a high-fidelity physical model and fast machine learning surrogates. Neural network (NN) models have been shown to classify highly non-linear functions and can be trained offline but require large training sets. In this work, we present how model-guided sampling can efficiently create datasets that are highly informative to a NN classifier for non-convex functions. We show how the resultant NN surrogates can be integrated into a non-linear program as smooth, continuous functions to simultaneously optimize the objective function and enforce feasibility using existing non-linear solvers. Overall, this allows us to optimize instances of the SCOPF problem with an order of magnitude CPU improvement over existing methods.
-
In this paper, we consider the problem of dynamic programming when supremum terms appear in the objective function. Such terms can represent overhead costs associated with the underlying state variables. Specifically, this form of optimization problem can be used to represent optimal scheduling of batteries such as the Tesla Powerwall for electrical consumers subject to demand charges - a charge based on the maximum rate of electricity consumption. These demand charges reflect the cost to the utility of building and maintaining generating capacity. Unfortunately, we show that dynamic programming problems with supremum terms do not satisfy the principle of optimality. However, we also show that the supremum is a special case of the class of forward separable objective functions. To solve the dynamic programming problem, we propose a general class of optimization problems with forward separable objectives. We then show that for any problem in this class, there exists an augmented-state dynamic programming problem which satisfies the principle of optimality and the solutions to which yield solutions to the original forward separable problem. We further generalize this approach to stochastic dynamic programming problems and apply the results to the problem of optimal battery scheduling with demand charges using a data-based stochastic model for electricity usage and solar generation by the consumer.more » « less