skip to main content


Title: Quadratically Constrained Quadratic Programming Formulation of Contingency Constrained Optimal Power Flow with Photovoltaic Generation
Contingency Constrained Optimal Power Flow (CCOPF) differs from traditional Optimal Power Flow (OPF) because its generation dispatch is planned to work with state variables between constraint limits, considering a specific contingency. When it is not desired to have changes in the power dispatch after the contingency occurs, the CCOPF is studied with a preventive perspective, whereas when the contingency occurs and the power dispatch needs to change to operate the system between limits in the post-contingency state, the problem is studied with a corrective perspective. As current power system software tools mainly focus on the traditional OPF problem, having the means to solve CCOPF will benefit power systems planning and operation. This paper presents a Quadratically Constrained Quadratic Programming (QCQP) formulation built within the matpower environment as a solution strategy to the preventive CCOPF. Moreover, an extended OPF model that forces the network to meet all constraints under contingency is proposed as a strategy to find the power dispatch solution for the corrective CCOPF. Validation is made on the IEEE 14-bus test system including photovoltaic generation in one simulation case. It was found that in the QCQP formulation, the power dispatch calculated barely differs in both pre- and post-contingency scenarios while in the OPF extended power network, node voltage values in both pre- and post-contingency scenarios are equal in spite of having different power dispatch for each scenario. This suggests that both the QCQP and the extended OPF formulations proposed, could be implemented in power system software tools in order to solve CCOPF problems from a preventive or corrective perspective.  more » « less
Award ID(s):
1646229
PAR ID:
10211820
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Energies
Volume:
13
Issue:
13
ISSN:
1996-1073
Page Range / eLocation ID:
3310
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a deep sigma point processes (DSPP)-assisted chance-constrained power system transient stability preventive control method to deal with uncertain renewable energy and loads-induced stability risk. The traditional transient stability-constrained preventive control is reformulated as a chance-constrained optimization problem. To deal with the computational bottleneck of the time-domain simulation-based probabilistic transient stability assessment, the DSPP is developed. DSPP is a parametric Bayesian approach that allows us to predict system transient stability with high computational efficiency while accurately quantifying the confidence intervals of the predictions that can be used to inform system instability risk. To this end, with a given preset confidence probability, we embed DSPP into the primal dual interior point method to help solve the chance-constrained preventive control problem, where the corresponding Jacobian and Hessian matrices are derived. Comparison results with other existing methods show that the proposed method can significantly speed up preventive control while maintaining high accuracy and convergence. 
    more » « less
  2. Learning mappings between system loading and optimal dispatch solutions has been a recent topic of interest in the power systems and machine learning communities. However, previous works have ignored practical power system constraints such as generator ramp limits and other intertemporal requirements. Additionally, optimal power flow runs are not performed independently of previous timesteps - in most cases, an OPF solution representing the current state of the system is heavily related to the OPF solution from previous timesteps. In this paper, we train a recurrent neural network, which embeds natural relationships between timesteps, to predict the optimal solution of convex power systems optimization problems with intertemporal constraints. In contrast to traditional forecasting methods, the computational benefits from this technique can allow operators to rapidly simulate forecasts of system operation and corresponding optimal solutions to provide a more comprehensive view of future system states. 
    more » « less
  3. o shift the computational burden from real-time to offline in delay-critical power systems applications, recent works entertain the idea of using a deep neural network (DNN) to predict the solutions of the AC optimal power flow (AC-OPF) once presented load demands. As network topologies may change, training this DNN in a sample-efficient manner becomes a necessity. To improve data efficiency, this work utilizes the fact OPF data are not simple training labels, but constitute the solutions of a parametric optimization problem. We thus advocate training a sensitivity-informed DNN (SI-DNN) to match not only the OPF optimizers, but also their partial derivatives with respect to the OPF parameters (loads). It is shown that the required Jacobian matrices do exist under mild conditions, and can be readily computed from the related primal/dual solutions. The proposed SI-DNN is compatible with a broad range of OPF solvers, including a non-convex quadratically constrained quadratic program (QCQP), its semidefinite program (SDP) relaxation, and MATPOWER; while SI-DNN can be seamlessly integrated in other learning-to-OPF schemes. Numerical tests on three benchmark power systems corroborate the advanced generalization and constraint satisfaction capabilities for the OPF solutions predicted by an SI-DNN over a conventionally trained DNN, especially in low-data setups. 
    more » « less
  4. Security concerns have been raised about cascading failure risks in evolving power grids. This paper reveals, for the first time, that the risk of cascading failures can be increased at low network demand levels when considering security-constrained generation dispatch. This occurs because critical transmission cor- ridors become very highly loaded due to the presence of central- ized generation dispatch, e.g., large thermal plants far from de- mand centers. This increased cascading risk is revealed in this work by incorporating security-constrained generation dispatch into the risk assessment and mitigation of cascading failures. A se- curity-constrained AC optimal power flow, which considers eco- nomic functions and security constraints (e.g., network con- straints, 𝑵 − 𝟏 security, and generation margin), is used to pro- vide a representative day-ahead operational plan. Cascading fail- ures are simulated using two simulators, a quasi-steady state DC power flow model, and a dynamic model incorporating all fre- quency-related dynamics, to allow for result comparison and ver- ification. The risk assessment procedure is illustrated using syn- thetic networks of 200 and 2,000 buses. Further, a novel preventive mitigation measure is proposed to first identify critical lines, whose failures are likely to trigger cascading failures, and then to limit power flow through these critical lines during dispatch. Results show that shifting power equivalent to 1% of total demand from critical lines to other lines can reduce cascading risk by up to 80%. 
    more » « less
  5. Dispatching a large fleet of distributed energy resources (DERs) in response to wholesale energy market or regional grid signals requires solving a challenging disaggregation problem when the DERs are located within a distribution network. This manuscript presents a computationally tractable convex inner approximation for the optimal power flow (OPF) problem that characterizes a feeders aggregate DERs hosting capacity and enables a realtime, grid-aware dispatch of DERs for radial distribution networks. The inner approximation is derived by considering convex envelopes on the nonlinear terms in the AC power flow equations. The resulting convex formulation is then used to derive provable nodal injection limits, such that any combination of DER dispatches within their respective nodal limits is guaranteed to be AC admissible. These nodal injection limits are then used to construct a realtime, open-loop control policy for dispatching DERs at each location in the network to collectively deliver grid services. The IEEE-37 distribution network is used to validate the technical results and highlight various use-cases. 
    more » « less