Struggling to curb misinformation, social media platforms are experimenting with design interventions to enhance consumption of credible news on their platforms. Some of these interventions, such as the use of warning messages, are examples of nudges---a choice-preserving technique to steer behavior. Despite their application, we do not know whether nudges could steer people into making conscious news credibility judgments online and if they do, under what constraints. To answer, we combine nudge techniques with heuristic based information processing to design NudgeCred--a browser extension for Twitter. NudgeCred directs users' attention to two design cues: authority of a source and other users' collective opinion on a report by activating three design nudges---Reliable, Questionable, and Unreliable, each denoting particular levels of credibility for news tweets. In a controlled experiment, we found that NudgeCred significantly helped users (n=430) distinguish news tweets' credibility, unrestricted by three behavioral confounds---political ideology, political cynicism, and media skepticism. A five-day field deployment with twelve participants revealed that NudgeCred improved their recognition of news items and attention towards all of our nudges, particularly towards Questionable. Among other considerations, participants proposed that designers should incorporate heuristics that users' would trust. Our work informs nudge-based system design approaches for online media.
more »
« less
How Dependable are “First Impressions” to Distinguish between Real and Fake News Websites?
In an increasingly information-dense web, how do we ensure that we do not fall for unreliable information? To design better web literacy practices for assessing online information, we need to understand how people perceive the credibility of unfamiliar websites under time constraints. Would they be able to rate real news websites as more credible and fake news websites as less credible? We investigated this research question through an experimental study with 42 participants (mean age = 28.3) who were asked to rate the credibility of various “real news” (n = 14) and “fake news” (n = 14) websites under different time conditions (6s, 12s, 20s), and with a different advertising treatment (with or without ads). Participants did not visit the websites to make their credibility assessments; instead, they interacted with the images of website screen captures, which were modified to remove any mention of website names, to avoid the effect of name recognition. Participants rated the credibility of each website on a scale from 1 to 7 and in follow-up interviews provided justifications for their credibility scores. Through hypothesis testing, we find that participants, despite limited time exposure to each website (between 6 and 20 seconds), are quite good at the task of distinguishing between real and fake news websites, with real news websites being overall rated as more credible than fake news websites. Our results agree with the well-known theory of “first impressions” from psychology, that has established the human ability to infer character traits from faces. That is, participants can quickly infer meaningful visual and content cues from a website, that are helping them make the right credibility evaluation decision.
more »
« less
- Award ID(s):
- 1751087
- PAR ID:
- 10177090
- Date Published:
- Journal Name:
- The 30th ACM International Conference on HyperText and Social Media (HT 2019)
- Page Range / eLocation ID:
- 201-210
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, deepfake techniques have been adopted by real-world adversaries to fabricate believable personas (posing as experts or insiders) in disinformation campaigns to promote false narratives and deceive the public. In this paper, we investigate how fake personas influence the user perception of the disinformation shared by such accounts. Using Twitter as an exemplary platform, we conduct a user study (N=417) where participants read tweets of fake news with (and without) the presence of the tweet authors' profiles. Our study examines and compares three types of fake profiles: deepfake profiles, profiles of relevant organizations, and simple bot profiles. Our results highlight the significant impact of deepfake and organization profiles on increasing the perceived information accuracy of and engagement with fake news. Moreover, deepfake profiles are rated as significantly more real than other profile types. Finally, we observe that users may like/reply/share a tweet even though they believe it was inaccurate (e.g., for fun or truth-seeking), which could further disseminate false information. We then discuss the implications of our findings and directions for future research.more » « less
-
In recent years, the emergence of fake news outlets has drawn out the importance of news literacy. This is particularly critical in social media where the flood of information makes it difficult for people to assess the veracity of the false stories from such deceitful sources. Therefore, people oftentimes fail to look skeptically at these stories. We explore a way to circumvent this problem by nudging users into making conscious assessments of what online contents are credible. For this purpose, we developed FeedReflect, a browser extension. The extension nudges users to pay more attention and uses reflective questions to engage in news credibility assessment on Twitter. We recruited a small number of university students to use this tool on Twitter. Both qualitative and quantitative analysis of the study suggests the extension helped people accurately assess the credibility of news. This implies FeedReflect can be used for the broader audience to improve online news literacy.more » « less
-
null (Ed.)In this paper, we provide a large-scale analysis of the display ad ecosystem that supports low-credibility and traditional news sites, with a particular focus on the relationship between retailers and news producers. We study this relationship from both the retailer and news producer perspectives. First, focusing on the retailers, our work reveals high-profile retailers that are frequently advertised on low-credibility news sites, including those that are more likely to be advertised on low-credibility news sites than traditional news sites. Additionally, despite high-profile retailers having more resources and incentive to dissociate with low-credibility news publishers, we surprisingly do not observe a strong relationship between retailer popularity and advertising intensity on low-credibility news sites. We also do not observe a significant difference across different market sectors. Second, turning to the publishers, we characterize how different retailers are contributing to the ad revenue stream of low-credibility news sites. We observe that retailers who are among the top-10K websites on the Internet account for a quarter of all ad traffic on low-credibility news sites. Nevertheless, we show that low-credibility news sites are already becoming less reliant on popular retailers over time, highlighting the dynamic nature of the low-credibility news ad ecosystem.more » « less
-
Cryptographic tools for authenticating the provenance of web-based information are a promising approach to increasing trust in online news and information. However, making these tools’ technical assurances sufficiently usable for news consumers is essential to realizing their potential. We conduct an online study with 160 participants to investigate how the presentation (visual vs. textual) and location (on a news article page or a third-party site) of the provenance information affects news consumers’ perception of the content’s credibility and trustworthiness, as well as the usability of the tool itself. We find that although the visual presentation of provenance information is more challenging to adopt than its text-based counterpart, this approach leads its users to put more faith in the credibility and trustworthiness of digital news, especially when situated internally to the news article.more » « less