skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AppMine: Behavioral Analytics for Web Application Vulnerability Detection
Web applications in widespread use have always been the target of large-scale attacks, leading to massive disruption of services and financial loss, as in the Equifax data breach. It has become common practice to deploy web applications in containers like Docker for better portability and ease of deployment.We design a system called AppMine for lightweight monitoring of web applications running in Docker containers and detection of unknown web vulnerabilities. AppMine is an unsupervised learning system, trained only on legitimate workloads of web applications, to detect anomalies based on either traditional models (PCA and one-class SVM), or more advanced neural-network architectures (LSTM). In our evaluation, we demonstrate that the neural network model outperforms more traditional methods on a range of web applications and recreated exploits. For instance, AppMine achieves average AUC scores as high as 0.97 for the Apache Struts application (with the CVE-2017-5638 exploit used in the Equifax breach), while the AUC scores for PCA and one-class SVM are 0.81 and 0.83, respectively.  more » « less
Award ID(s):
1717634
PAR ID:
10177146
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The ACM Cloud Computing Security Workshop (CCSW)
Page Range / eLocation ID:
69-80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The HPC community is actively researching and evaluating tools to support execution of scientific applications in cloud-based environ- ments. Among the various technologies, containers have recently gained importance as they have significantly better performance compared to full-scale virtualization, support for microservices and DevOps, and work seamlessly with workflow and orchestration tools. Docker is currently the leader in containerization technology because it offers low overhead, flexibility, portability of applications, and reproducibility. Singularity is another container solution that is of interest as it is designed specifically for scientific applications. It is important to conduct performance and feature analysis of the container technologies to understand their applicability for each application and target execution environment. This paper presents a (1) performance evaluation of Docker and Singularity on bare metal nodes in the Chameleon cloud (2) mecha- nism by which Docker containers can be mapped with InfiniBand hardware with RDMA communication and (3) analysis of mapping elements of parallel workloads to the containers for optimal re- source management with container-ready orchestration tools. Our experiments are targeted toward application developers so that they can make informed decisions on choosing the container tech- nologies and approaches that are suitable for their HPC workloads on cloud infrastructure. Our performance analysis shows that sci- entific workloads for both Docker and Singularity based containers can achieve near-native performance. Singularity is designed specifically for HPC workloads. However, Docker still has advantages over Singularity for use in clouds as it provides overlay networking and an intuitive way to run MPI applications with one container per rank for fine-grained resources allocation. Both Docker and Singularity make it possible to directly use the underlying network fabric from the containers for coarse- grained resource allocation. 
    more » « less
  2. Recent work has shown that lightweight virtualization like Docker containers can be used in HPC to package applications with their runtime environments. In many respects, applications in containers perform similarly to native applications. Other work has shown that containers can have adverse effects on the latency variation of communications with the enclosed application. This latency variation may have an impact on the performance of some HPC workloads, especially those dependent on synchronization between processes. In this work, we measure the latency characteristics of messages between Docker containers, and then compare those measurements to the performance of real-world applications. Our specific goals are to: measure the changes in mean and variation of latency with Docker containers, study how this affects the synchronization time of MPI processes, and measure the impact of these factors on real­world applications such as the NAS Parallel Benchmark (NPB). 
    more » « less
  3. null (Ed.)
    The first major goal of this project is to build a state-of-the-art information storage, retrieval, and analysis system that utilizes the latest technology and industry methods. This system is leveraged to accomplish another major goal, supporting modern search and browse capabilities for a large collection of tweets from the Twitter social media platform, web pages, and electronic theses and dissertations (ETDs). The backbone of the information system is a Docker container cluster running with Rancher and Kubernetes. Information retrieval and visualization is accomplished with containers in a pipelined fashion, whether in the cluster or on virtual machines, for Elasticsearch and Kibana, respectively. In addition to traditional searching and browsing, the system supports full-text and metadata searching. Search results include facets as a modern means of browsing among related documents. The system supports text analysis and machine learning to reveal new properties of collection data. These new properties assist in the generation of available facets. Recommendations are also presented with search results based on associations among documents and with logged user activity. The information system is co-designed by five teams of Virginia Tech graduate students, all members of the same computer science class, CS 5604. Although the project is an academic exercise, it is the practice of the teams to work and interact as though they are groups within a company developing a product. The teams on this project include three collection management groups -- Electronic Theses and Dissertations (ETD), Tweets (TWT), and Web-Pages (WP) -- as well as the Front-end (FE) group and the Integration (INT) group to help provide the overarching structure for the application. This submission focuses on the work of the Integration (INT) team, which creates and administers Docker containers for each team in addition to administering the cluster infrastructure. Each container is a customized application environment that is specific to the needs of the corresponding team. Each team will have several of these containers set up in a pipeline formation to allow scaling and extension of the current system. The INT team also contributes to a cross-team effort for exploring the use of Elasticsearch and its internally associated database. The INT team administers the integration of the Ceph data storage system into the CS Department Cloud and provides support for interactions between containers and the Ceph filesystem. During formative stages of development, the INT team also has a role in guiding team evaluations of prospective container components and workflows. The INT team is responsible for the overall project architecture and facilitating the tools and tutorials that assist the other teams in deploying containers in a development environment according to mutual specifications agreed upon with each team. The INT team maintains the status of the Kubernetes cluster, deploying new containers and pods as needed by the collection management teams as they expand their workflows. This team is responsible for utilizing a continuous integration process to update existing containers. During the development stage the INT team collaborates specifically with the collection management teams to create the pipeline for the ingestion and processing of new collection documents, crossing services between those teams as needed. The INT team develops a reasoner engine to construct workflows with information goal as input, which are then programmatically authored, scheduled, and monitored using Apache Airflow. The INT team is responsible for the flow, management, and logging of system performance data and making any adjustments necessary based on the analysis of testing results. The INT team has established a Gitlab repository for archival code related to the entire project and has provided the other groups with the documentation to deposit their code in the repository. This repository will be expanded using Gitlab CI in order to provide continuous integration and testing once it is available. Finally, the INT team will provide a production distribution that includes all embedded Docker containers and sub-embedded Git source code repositories. The INT team will archive this distribution on the Virginia Tech Docker Container Registry and deploy it on the Virginia Tech CS Cloud. The INT-2020 team owes a sincere debt of gratitude to the work of the INT-2019 team. This is a very large undertaking and the wrangling of all of the products and processes would not have been possible without their guidance in both direct and written form. We have relied heavily on the foundation they and their predecessors have provided for us. We continue their work with systematic improvements, but also want to acknowledge their efforts Ibid. Without them, our progress to date would not have been possible. 
    more » « less
  4. Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores. 
    more » « less
  5. Container systems (e.g., Docker) provide a well-defined, lightweight, and versatile foundation to streamline the process of tool deployment, to provide a consistent and repeatable experimental interface, and to leverage data centers in the global cloud infrastructure as measurement vantage points. However, the virtual network devices commonly used to connect containers to the Internet are known to impose latency overheads which distort the values reported by measurement tools running inside containers. In this study, we develop a tool called MACE to measure and remove the latency overhead of virtual network devices as used by Docker containers. A key insight of MACE is the fact that container functions all execute in the same kernel. Based on this insight, MACE is implemented as a Linux kernel module using the trace event subsystem to measure latency along the network stack code path. Using CloudLab, we evaluate MACE by comparing the ping measurements emitted from a slim-ping container to the ones emitted using the same tool running in the bare metal machine under varying traffic loads. Our evaluation shows that the MACE-adjusted RTT measurements are within 20 µs of the bare metal ping RTTs on average while incurring less than 25 µs RTT perturbation. We also compare RTT perturbation incurred by MACE with perturbation incurred by the built-in ftrace kernel tracing system and find that MACE incurs less perturbation. 
    more » « less