The deployment of deep learning-based malware detection systems has transformed cybersecurity, offering sophisticated pattern recognition capabilities that surpass traditional signature-based approaches. However, these systems introduce new vulnerabilities requiring systematic investigation. This chapter examines adversarial attacks against graph neural network-based malware detection systems, focusing on semantics-preserving methodologies that evade detection while maintaining program functionality. We introduce a reinforcement learning (RL) framework that formulates the attack as a sequential decision making problem, optimizing the insertion of no-operation (NOP) instructions to manipulate graph structure without altering program behavior. Comparative analysis includes three baseline methods: random insertion, hill-climbing, and gradient-approximation attacks. Our experimental evaluation on real world malware datasets reveals significant differences in effectiveness, with the reinforcement learning approach achieving perfect evasion rates against both Graph Convolutional Network and Deep Graph Convolutional Neural Network architectures while requiring minimal program modifications. Our findings reveal three critical research gaps: transitioning from abstract Control Flow Graph representations to executable binary manipulation, developing universal vulnerability discovery across different architectures, and systematically translating adversarial insights into defensive enhancements. This work contributes to understanding adversarial vulnerabilities in graph-based security systems while establishing frameworks for evaluating machine learning-based malware detection robustness. 
                        more » 
                        « less   
                    
                            
                            Ransomware Classification and Detection With Machine Learning Algorithms
                        
                    
    
            Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10347037
- Date Published:
- Journal Name:
- 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC)
- Page Range / eLocation ID:
- 316-322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The unprecedented growth in mobile systems has transformed the way we approach everyday computing. Unfortunately, the emergence of a sophisticated type of malware known as ransomware poses a great threat to consumers of this technology. Traditional research on mobile malware detection has focused on approaches that rely on analyzing bytecode for uncovering malicious apps. However, cybercriminals can bypass such methods by embedding malware directly in native machine code, making traditional methods inadequate. Another challenge that detection solutions face is scalability. The sheer number of malware variants released every year makes it difficult for solutions to efficiently scale their coverage. To address these concerns, this work presents RansomShield, an energy-efficient solution that leverages CNNs to detect ransomware. We evaluate CNN architectures that have been known to perform well on computer vision tasks and examine their suitability for ransomware detection. We show that systematically converting native instructions from Android apps into images using space-filling curve visualization techniques enable CNNs to reliably detect ransomware with high accuracy. We characterize the robustness of this approach across ARM and x86 architectures and demonstrate the effectiveness of this solution across heterogeneous platforms including smartphones and chromebooks. We evaluate the suitability of different models for mobile systems by comparing their energy demands using different platforms. In addition, we present a CNN introspection framework that determines the important features that are needed for ransomware detection. Finally, we evaluate the robustness of this solution against adversarial machine learning (AML) attacks using state-of-the-art Android malware dataset.more » « less
- 
            Recent advances in machine learning and deep neural networks have led to the realization of many important applications in the area of personalized medicine. Whether it is detecting activities of daily living or analyzing images for cancerous cells, machine learning algorithms have become the dominant choice for such emerging applications. In particular, the state-of-the-art algorithms used for human activity recognition (HAR) using wearable inertial sensors utilize machine learning algorithms to detect health events and to make predictions from sensor data. Currently, however, there remains a gap in research on whether or not and how activity recognition algorithms may become the subject of adversarial attacks. In this paper, we take the first strides on (1) investigating methods of generating adversarial example in the context of HAR systems; (2) studying the vulnerability of activity recognition models to adversarial examples in feature and signal domain; and (3) investigating the effects of adversarial training on HAR systems. We introduce Adar, a novel computational framework for optimization-driven creation of adversarial examples in sensor-based activity recognition systems. Through extensive analysis based on real sensor data collected with human subjects, we found that simple evasion attacks are able to decrease the accuracy of a deep neural network from 95.1% to 3.4% and from 93.1% to 16.8% in the case of a convolutional neural network. With adversarial training, the robustness of the deep neural network increased on the adversarial examples by 49.1% in the worst case while the accuracy on clean samples decreased by 13.2%.more » « less
- 
            In recent years, ransomware attacks have grown dramatically. New variants continually emerging make tracking and mitigating these threats increasingly difficult using traditional detection methods. As the landscape of ransomware evolves, there is a growing need for more advanced detection techniques. Neural networks have gained popularity as a method to enhance detection accuracy, by leveraging low-level hardware information such as hardware events as features for identifying ransomware attacks. In this paper, we investigated several state-of-the-art supervised learning models, including XGBoost, LightGBM, MLP, and CNN, which are specifically designed to handle time series data or image-based data for ransomware detection. We compared their detection accuracy, computational efficiency, and resource requirements for classification. Our findings indicate that particularly LightGBM, offer a strong balance of high detection accuracy, fast processing speed, and low memory usage, making them highly effective for ransomware detection tasks.more » « less
- 
            null (Ed.)Industrial Control Systems (ICS) are used to control physical processes in critical infrastructure. These systems are used in a wide variety of operations such as water treatment, power generation and distribution, and manufacturing. While the safety and security of these systems are of serious concern, recent reports have shown an increase in targeted attacks aimed at manipulating physical processes to cause catastrophic consequences. This trend emphasizes the need for algorithms and tools that provide resilient and smart attack detection mechanisms to protect ICS. In this paper, we propose an anomaly detection framework for ICS based on a deep neural network. The proposed methodology uses dilated convolution and long short-term memory (LSTM) layers to learn temporal as well as long term dependencies within sensor and actuator data in an ICS. The sensor/actuator data are passed through a unique feature engineering pipeline where wavelet transformation is applied to the sensor signals to extract features that are fed into the model. Additionally, this paper explores four variations of supervised deep learning models, as well as an unsupervised support vector machine (SVM) model for this problem. The proposed framework is validated on Secure Water Treatment testbed results. This framework detects more attacks in a shorter period of time than previously published methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    