skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Assessing Gender and Racial/Ethnic Parity in the Computing Fields: Evidence from the Integrated Postsecondary Education Data System
:Data show that science, technology, engineering and math (STEM) postsecondary training programs lack gender and racial/ethnic diversity. Recent policy efforts are aimed at creating more inclusive environments for underrepresented groups in STEM and several national reports highlight progress. We argue that prior analyses have not considered institutional contexts and changes in the demographics of students enrolled in higher education more broadly. We propose new measures of gender and racial/ethnic parity in the computing fields. Using these measures, we find that while computing fields have made progress in the number of female students and students of color receiving degrees, gender and racial/ethnic parity has changed little and, in some cases, declined. We conclude with recommendations for researchers, practitioners, and policymakers.    more » « less
Award ID(s):
1834620 2137791
NSF-PAR ID:
10177156
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual meeting program American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Student success in educational ecosystems is a primary goal of leadership efforts. Yet, power and privilege affect the racial, classist, and gendered implications of STEM education work in K-12 education as well as higher education. Interventions have been done at various levels, but despite the hard work of implementation, this has not resulted in dramatic improvements to STEM educational ecosystems or student engagement within them. Often, these implementations are done at the faculty/student level or institutional level but not at the departmental leadership level. The NSF-supported Eco-STEM Project proposes to establish a healthy educational ecosystem that supports all individuals (students, faculty, and staff) to thrive. Project activities are guided by ecosystem paradigm measures that support a culturally responsive learning/working environment; make teaching and learning rewarding and fulfilling; and emphasize community assets to enhance motivation, excellence, and success. For this work-in-progress paper, we describe the development of a leadership community of practice, comprised of department chairs of science and engineering departments, at [university name redacted], a large state-funded comprehensive majority minority master’s granting institution in the Southwest United States. In the year-long Leadership Community of Practice (L-CoP), the Fellows work on unpacking issues of power and privilege in their roles as STEM leaders and educators. During the Fall semester of 2022, the Fellows participated in four sessions. They engaged in readings, videos, active-learning activities, and critically reflective dialogues to facilitate discussion and reflection on identity, agency, the culture of power in STEM, and interventions and change in higher education. The L-CoP starts with Fellows reflecting on their social and professional identities and how their identities influence their teaching and leadership philosophies. Then Fellows are introduced to the framework of the culture of power in science--where they explore the social, cultural, and political impacts of preparing for a STEM college education. Finally, they explore theories and models of change for STEM higher education spaces. Through this curriculum, we aim to examine mental models to deconstruct notions that uphold the culture of power in science by instead building counternarratives with faculty and students in their departments. Through dialogues within the L-CoP, leaders discuss classroom/program climate, structure, and vibrancy to better support healthy educational ecosystems, as well as their participation in these systems. We are currently in the middle of our first implementation of the L-CoP. The first cohort consists of six L-CoP Fellows with highly diverse positionalities; there is racial, ethnic, and gender diversity, and all Fellows are full professors in the tenure line and chairs of their respective departments. We present details of the L-CoP, including the formation of the Fellow cohort, training of the facilitators, structure of the sessions, and initial results of our mid-program survey. The survey results provide insights into potential improvements to our tools and program. We also share some of the Fellows’ and facilitators’ reflections demonstrating a shift toward an ecosystem mindset. We prefer to present this work as a poster at the 2023 ASEE Annual Conference. 
    more » « less
  2. Is there a relationship between mathematics ability beliefs and STEM degrees? Fields such as physics, engineering, mathematics, and computer science (PEMC) are thought to require talent or brilliance. However, the potential effects of difficulty perceptions on students’ participation in STEM have yet to be examined using a gender and race/ethnicity intersectional lens. Using nationally representative U.S. longitudinal data, we measure gender and racial/ethnic variation in secondary students’ orientation towards mathematics difficulty. We observed nuanced relationships between mathematics difficulty orientation, gender, race/ethnicity, and PEMC major and degree outcomes. In secondary school, the gap between boys’ and girls’ mathematics difficulty orientations were wider than gaps between White and non-White students. Mathematics difficulty orientation was positively associated with both declaring majors and earning degrees in PEMC. This relationship varied more strongly based on gender than race/ethnicity. Notably, Black women show higher gains in predicted probability to declare a mathematics-intensive major as compared to all other women, given their mathematics difficulty orientations. This study’s findings show that both gender and racial/ethnic identities may influence the relationship between mathematics difficulty orientation and postsecondary STEM outcomes. 
    more » « less
  3. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. 
    more » « less
  4. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. 
    more » « less
  5. Abstract Background

    Despite the diverse student population in the USA, the labor force in Science, Technology, Engineering, and Mathematics (STEM) does not reflect this reality. While restrictive messages about who belongs in STEM likely discourage students, particularly female and minoritized students, from entering these fields, extant research on this topic is typically focused on the negative impact of stereotypes regarding math ability, or the existence of stereotypes about the physical appearance of scientists. Instead, this study builds on the limited body of research that captures a more comprehensive picture of students’ views of scientists, including not only the type of work that they do but also the things that interest them. Specifically, utilizing a sample of approximately 1000 Black and Latinx adolescents, the study employs an intersectional lens to examine whether the prevalence of counter-stereotypical views of scientists, and the association such views have on subsequent intentions to pursue STEM college majors, varies among students from different gender and racial/ethnic groups (e.g., Black female students, Latinx male students).

    Results

    While about half of Black and Latinx students reported holding counter-stereotypical beliefs about scientists, this is significantly more common among female students of color, and among Black female students in particular. Results from logistic regression models indicate that, net of control variables, holding counter-stereotypical beliefs about scientists predicts both young men’s and women’s intentions to major in computer science and engineering, but not intentions to major in either physical science or mathematics. Additionally, among Black and Latinx male students, counter-stereotypical perceptions of scientists are related to a higher likelihood of intending to major in biological sciences.

    Conclusions

    The results support the use of an intersectional approach to consider how counter-stereotypical beliefs about scientists differ across gender and racial/ethnic groups. Importantly, the results also suggest that among Black and Latinx youth, for both female and male students, holding counter-stereotypical beliefs promotes intentions to enter particular STEM fields in which they are severely underrepresented. Implications of these findings and directions for future research, specifically focusing on minoritized students, which are often left out in this body of literature, are discussed.

     
    more » « less