skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2137791

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This research-to-practice full paper describes a cohort-based undergraduate research program designed to improve STEM retention through structured mentoring and community building. Drawing on the Affinity Research Group (ARG) model, the program fosters faculty-student research collaboration and integrates faculty mentorship training, student-led peer mentoring, and structured interventions, such as research skills workshops and networking events. Each year, faculty from biology, chemistry, computer science, environmental science, and mathematics lead small-group research projects with recruited students who may participate for up to three years. Faculty and students receive ARG training to promote consistent mentoring practices. A credit-bearing, major-specific first-year orientation course supports recruitment and reinforces students’ scientific identity. Faculty also engage in professional development workshops to strengthen student-centered mentoring approaches. Data collection includes surveys, interviews, retention tracking, and weekly journaling to assess STEM identity, belonging, and skill development. External evaluators reviewed the faculty focus groups to assess mentoring effectiveness. Initial findings show strong faculty engagement with the ARG model, with many adopting adaptive mentoring strategies that enhance student support. Students report increased confidence and belonging within their disciplines. However, cross-disciplinary collaboration remains limited, highlighting the need for more intentional networking within the cohort. Students also emphasized the value of peer collaboration alongside faculty mentorship. These results suggest that undergraduate research can serve as a powerful tool for building community and supporting persistence in STEM. Ongoing efforts will focus on expanding networking opportunities, strengthening peer collaboration, and evaluating long-term impacts on student retention. 
    more » « less
    Free, publicly-accessible full text available November 5, 2026
  2. This work-in-progress innovative practice paper describes an approach and presents preliminary results of an effort by the NSF-funded Computing Alliance of Hispanic-Serving Institutions (CAHSI) to build research capacity of faculty at HSIs and students from underserved populations. A key factor in our nation's ability to innovate solutions to grand challenges and compete in a technology-enhanced world that rapidly changes is the involvement of individuals with different perspectives, experiences, and disciplinary knowledge. Diversifying representation in research cannot be achieved without involvement of HSIs, which enroll significant numbers of minoritized students in U.S. higher education. This paper describes a CAHSI-Google Institutional Research Program (IRP) that builds research capacity through partnerships between computing doctoral-granting CAHSI institutions and computing non-doctoral granting CAHSI institutions. This paper describes the IRP and its well-defined process to support faculty as they develop and refine research ideas and submit competitive proposals for funding through the IRP that includes a collaboration plan outlining coordination mechanisms and student professional development efforts. 
    more » « less
  3. This Innovative Practice paper describes the Local Research Experiences for Undergraduates (LREU) program that was established by the Computing Alliance of Hispanic-Serving Institutions (CAHSI) at Hispanic-serving institutions (HSIs) in 2021 to increase the number of students, particularly students from underrepresented populations, who enter graduate programs in computer science. Since its first offering in Spring 2022, the LREU program has involved 182 faculty and 253 students. The LREU program funds undergraduate research experiences at the students’ home institutions with an emphasis on first-generation students and those with financial needs. The motivation for the program is to address the low number of domestic students, particularly Hispanics and other minoritized populations, who seek and complete graduate degrees. Research shows that participation in research activities predicts college outcomes such as GPA, retention, and persistence. Even though these studies inform us of the importance of REU programs, many programmatic efforts are summer experiences and, while students may receive support, faculty mentors rarely receive coaching or professional development efforts. What distinguishes the LREU program is the focus on the deliberative development of students’ professional and research skills; faculty coaching on the Affinity Research Group model; and the learning community established to share experiences and practices and to learn from each other. Students, who are matched with faculty mentors based on their areas of interest, work with their mentor to co-create a research plan. Students keep a research journal in which they record what they have learned and identify areas for their growth and development as researchers. The LREU provides an opportunity for the LREU participants to cultivate a growth mindset through deliberate practice and reflection from personal, professional, social, and academic perspectives. The paper discusses the multi-institutional perspectives that help CAHSI understand the types of challenges faced in undergraduate research programs, how faculty mentors communicate and make decisions, and how mentors resolve challenges, allowing the research community to better understand students’ and faculty experiences. In addition, the paper reports on research and evaluation results that documented mentors’ growth in their knowledge of effective research mentoring practices and students’ learning gains in research and other skills. The paper also describes the impact of the learning community, e.g., how it supports developing strategies for interaction with and mentoring students from underrepresented populations. 
    more » « less
  4. Involving diverse individuals who bring different perspectives, experiences, and disciplinary knowledge in solving problems is critical to our nation's ability to innovate and compete in a global economy. Unfortunately, the trends in the number of graduates with advanced degrees, particularly ethnically and racially diverse citizens and permanent residents, are insufficient to meet current and future national needs. This is exacerbated in computing, which is one of the least diverse fields. Despite the growth in numbers of Hispanics nationally and their representation in undergraduate studies, the number of Hispanic citizens and permanent residents who enter and complete graduate computing studies is disturbingly low. Studies report that Hispanic graduate students across all fields of study feel isolated and alienated, face a lack of support, experience low expectations from faculty, and a negative racial/ethnic climate. Students often encounter a STEM culture centered on competition and selectivity, and this must be addressed to increase pathways to the doctorate to support our nation's economic and national security goals. This paper describes a collective effort of institutions with high enrollments of Hispanic students that have built partnerships among non-doctoral-granting and doctoral-granting institutions to increase the representation of Hispanics in graduate studies. Led by NSF's Eddie Bernice Johnson Computing Alliance of Hispanic-Serving Institutions (CAHSI), the collective employs evidence-based practices grounded in the Hispanic-servingness literature to address the root causes. 
    more » « less
  5. Utilizing the Affinity Research Group (ARG) model, the Computing Alliance of Hispanic Serving Institutions (CAHSI) has provided training for faculty and student research experiences for decades. ARG, a CAHSI signature practice, focuses on deliberate, structured faculty and student research, with accompanying technical, communication, and professional skills development. In the latest iterations that have spanned the pandemic and its recovery, CAHSI has iterated on a virtual training and support network for faculty and students interested in broadening the participation of Hispanic undergraduate students in computer science to increase the number of Hispanics who move on to graduate studies in the field. This work-in-progress paper analyzes shifting support structures during a multi-year effort to promote undergraduate research development using the Affinity Research Group (ARG) model. As CAHSI grows to include research-intensive universities that have recently reached the 25% Hispanic enrollment threshold, the faculty mentor training has evolved to emphasize a growth mindset and asset-based frameworks for working with undergraduate students in research, particularly important in computing departments where graduate students are more commonly engaged in research. The paper describes areas of need as the populations of faculty and students shift. It addresses the questions: R1) How do faculty engaged in the LREU shift perspectives regarding a) student selection for research, b) pedagogical purposes of research for student development, and c) their ability to implement ARG? R2) To what extent do designed elements of the LREU professional development inform faculty practice and faculty perspectives regarding undergraduate research? 
    more » « less
  6. Lu, B.; Alvin, C. (Ed.)
    While undergraduate Computer Science (CS) degree programs typically prepare students for well-established roles (e.g. software developer, professor, and designer), several emergent CS career roles have gained prominence during the 21st century. CS majors (and students considering CS as a major) are often unaware of the wide range of careers available to job candidates with a CS background. This experience report describes seven innovative courses that broaden awareness of CS career roles and prepare students for technical interviews. Five courses prepared students for these career roles: Full-Stack Developer, Product Manager, ML or NLU Scientist, Technical Entrepreneur, and User Experience Designer/Developer/Researcher. The other two courses had traditional content but explicitly prepared students for technical interviews. These courses were co-developed by industry professionals and CS professors, and co-taught during a semester-long academic program. This paper highlights the replicable aspects of the program: the courses, teaching practices, and evaluation instruments (a teaching practices inventory and a data structures inventory). 
    more » « less
  7. The Computing Alliance of Hispanic Serving Institutions (CAHSI), a national INCLUDES alliance, is committed to supporting students in attaining credentials in computing. Its latest effort focuses on advancing undergraduate computing majors into graduate school to address the low numbers of Hispanics, or Latinx, attaining graduate degrees in computing. CAHSI expands adoption of evidence-based, multi-institutional graduate support structures that lead to Latinx students’ success. This paper describes strategic efforts to address well-documented barriers among graduate students (across all areas of study), e.g., feeling of isolation, lack of support structures, deficit thinking, and negative departmental climate. 
    more » « less