The goal of our research is to establish the direction of coronavirus chaotic motion to control corona dynamic by fractal nature analysis. These microorganisms attaching the different cells and organs in the human body getting very dangerous because we don’t have corona antivirus prevention and protection but also the unpredictable these viruses motion directions what resulting in very important distractions. Our idea is to develop the method and procedure to control the virus motion direction with the intention to prognose on which cells and organs could attach. We combined very rear coronavirus motion sub-microstructures images from worldwide experimental microstructure analysis. The problem of the recording this motion is from one point of view magnification, but the other side in resolution, because the virus size is minimum 10 times less than bacterizes. But all these images have been good data to resolve by time interval method and fractals, the points on the motion trajectory. We successfully defined the diagrams on the way to establish control over Brownian chaotic motion as a bridge between chaotic disorder to control disorder. This opens a very new perspective to future research to get complete control of coronavirus cases. 
                        more » 
                        « less   
                    
                            
                            Brownian motion and fractal nature
                        
                    
    
            The main goal of our research is to find the connection between micro particles and microorganisms motion in the Nature, considered as Brownian’s Motion within the fractal’s nature. For ceramics and generally material science it is important to clarify the particles motion and other phenomena, especially for grains and pores. Our idea is to establish control over the relation order–disorder on particle motion and their collision effects by Brownian motion phenomena in the frame of fractal nature matter. We performed some experiments and got interesting results based on microorganism motion initiated by different outer energetic impulses. This is practically the idea of biomimetic correlation between particles and microorganisms Worlds, what is very original and leads towards biunivocal different phenomena’s understanding. Another idea is to establish some controlling effects for electro ceramic particle motion in chemical-materials sciences consolidation by some phenomena in the nature. These important research directions open new frontiers with very specific reflections for future of microelectronics materials. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1829245
- PAR ID:
- 10177230
- Date Published:
- Journal Name:
- Modern Physics Letters B
- Volume:
- 34
- Issue:
- 19n20
- ISSN:
- 0217-9849
- Page Range / eLocation ID:
- 2040061
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Advanced research frontiers are extended from biophysics relations on the Earth upto the discovering any type of alive matter within the whole space. Microorganisms’ motion within the molecular biology processes integrates variety of microorgnisms functions. In continuation of our Brownian motion phenomena research, we consistently build molecular-microorganisms structures hierarchy. We recognize everywhere biomimetic similarities between the particles in alive and nonalive matter. The research data are based on real experiments, without external energy impulses. So, we develop the analysis, inspired by fractal nature Brownian motion, as recognized joint parameter between particles in alive and nonalive biophysical systems. This is also in line with advance trends in hybrid submicroelectronic integrations. The important innovation in this paper is that we introduced approximation of trajectory and error calculations, using discrete mean square approximation, what cumulatively provide much more precise biophysical systems parameters. By this paper, we continue to generate new knowledge in direction to get complex relations between the particles clusters in biophysical systems condensed matter.more » « less
- 
            Biophysical and condensed matter systems connection is of great importance nowadays due to the need for a new approach in microelectronic biodevices, biocomputers or biochips advanced development. Considering that the living and nonliving systems’ submicroparticles are identical, we can establish the biunivocally correspondent relation between these two particle systems, as a biomimetic correlation based on Brownian motion fractal nature similarities, as the integrative property. In our research, we used the experimental results of bacterial motion under the influence of energetic impulses, like music, and also some biomolecule motion data. Our goal is to define the relation between biophysical and physical particle systems, by introducing mathematical analytical forms and applying Brownian motion fractal nature characterization and fractal interpolation. This work is an advanced research in the field of new solutions for high-level microelectronic integrations, which include submicrobiosystems like part of even organic microelectronic considerations, together with some physical systems of particles in solid-state solutions as a nonorganic part. Our research is based on Brownian motion minimal joint properties within the integrated biophysical systems in the wholeness of nature.more » « less
- 
            The particles in condensed matter physics are almost characterized by Brownian motion. This phenomenon is the basis for a very important understanding of the particles motion in condensed matter. For our previous research, there is already applied and confirmed the complex fractal correction which includes influence of parameters from grains and pores surface and also effects based on particles’ Brownian motion. As a chaotic structure of these motions, we have very complex research results regarding the particles’ trajectories in three-dimension (3D). In our research paper, we applied fractal interpolation within the idea to reconstruct the above mentioned trajectories in two dimensions at this stage. Because of the very complex fractional mathematics on Brownian motion, we found and developed much simpler and effective mathematization. The starting point is within linear interpolation. In our previous research, we presented very original line fractalization based on tensor product. But, in this paper, we applied and successfully confirmed that by fractal interpolation (Akimo polynomial method) that is possible to reconstruct the chaotical trajectories lines structures by several fractalized intervals and involved intervals. This novelty is very important because of the much more effective procedure that we can reconstruct and in that way control the particles’ trajectories. This is very important for further advanced research in microelectronics, especially inter-granular micro capacitors.more » « less
- 
            Colloidal clay Laponite forms a variety of arrested states that display interesting aging behavior. Microrheology has been applied to Laponite-based glasses and gels, but few studies evaluate the influence of probe particle size. In this work, we report the dynamics and microrheology of Laponite-polymer dispersions during aging using passive microrheology with three different probe particle sizes. At early aging times, the neat Laponite dispersion forms an arrested state; the nature of this state (e.g., a repulsive glass or gel) has remained the subject of debate. The addition of polymer retards gelation and melts the arrested state. While this melting has been observed at the macroscale and has been attributed to a re-entrant transition of a repulsive glass to a liquid state, to our knowledge, it has not been observed at the microscale. The delay of the gelation time needed to form an arrested state was found to depend on the polymer concentration and could vary from ∼24 h for neat Laponite to seven days for some Laponite-polymer samples. Significant effects of probe particle sizes are observed from the mean-squared displacement (MSD) curves as small and intermediate probe particles show diffusive motion, while the motion of large particles is restricted. By examining the factor of ⟨Δ r 2 (τ)⟩ a, structural heterogeneity can be confirmed through the strong size-dependence displayed. Different MSD trends of probe particles are obtained at longer aging times, but no significant changes occur after 30 days of aging. Our microrheology results also reveal significant effects of probe particle size.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    