skip to main content


Title: The fractal interpolation applied on brownian motion particles trajectories reconstruction
The particles in condensed matter physics are almost characterized by Brownian motion. This phenomenon is the basis for a very important understanding of the particles motion in condensed matter. For our previous research, there is already applied and confirmed the complex fractal correction which includes influence of parameters from grains and pores surface and also effects based on particles’ Brownian motion. As a chaotic structure of these motions, we have very complex research results regarding the particles’ trajectories in three-dimension (3D). In our research paper, we applied fractal interpolation within the idea to reconstruct the above mentioned trajectories in two dimensions at this stage. Because of the very complex fractional mathematics on Brownian motion, we found and developed much simpler and effective mathematization. The starting point is within linear interpolation. In our previous research, we presented very original line fractalization based on tensor product. But, in this paper, we applied and successfully confirmed that by fractal interpolation (Akimo polynomial method) that is possible to reconstruct the chaotical trajectories lines structures by several fractalized intervals and involved intervals. This novelty is very important because of the much more effective procedure that we can reconstruct and in that way control the particles’ trajectories. This is very important for further advanced research in microelectronics, especially inter-granular micro capacitors.  more » « less
Award ID(s):
2101041
NSF-PAR ID:
10357087
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Modern Physics B
Volume:
36
Issue:
04
ISSN:
0217-9792
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advanced research frontiers are extended from biophysics relations on the Earth upto the discovering any type of alive matter within the whole space. Microorganisms’ motion within the molecular biology processes integrates variety of microorgnisms functions. In continuation of our Brownian motion phenomena research, we consistently build molecular-microorganisms structures hierarchy. We recognize everywhere biomimetic similarities between the particles in alive and nonalive matter. The research data are based on real experiments, without external energy impulses. So, we develop the analysis, inspired by fractal nature Brownian motion, as recognized joint parameter between particles in alive and nonalive biophysical systems. This is also in line with advance trends in hybrid submicroelectronic integrations. The important innovation in this paper is that we introduced approximation of trajectory and error calculations, using discrete mean square approximation, what cumulatively provide much more precise biophysical systems parameters. By this paper, we continue to generate new knowledge in direction to get complex relations between the particles clusters in biophysical systems condensed matter. 
    more » « less
  2. Biophysical and condensed matter systems connection is of great importance nowadays due to the need for a new approach in microelectronic biodevices, biocomputers or biochips advanced development. Considering that the living and nonliving systems’ submicroparticles are identical, we can establish the biunivocally correspondent relation between these two particle systems, as a biomimetic correlation based on Brownian motion fractal nature similarities, as the integrative property. In our research, we used the experimental results of bacterial motion under the influence of energetic impulses, like music, and also some biomolecule motion data. Our goal is to define the relation between biophysical and physical particle systems, by introducing mathematical analytical forms and applying Brownian motion fractal nature characterization and fractal interpolation. This work is an advanced research in the field of new solutions for high-level microelectronic integrations, which include submicrobiosystems like part of even organic microelectronic considerations, together with some physical systems of particles in solid-state solutions as a nonorganic part. Our research is based on Brownian motion minimal joint properties within the integrated biophysical systems in the wholeness of nature. 
    more » « less
  3. The main goal of our research is to find the connection between micro particles and microorganisms motion in the Nature, considered as Brownian’s Motion within the fractal’s nature. For ceramics and generally material science it is important to clarify the particles motion and other phenomena, especially for grains and pores. Our idea is to establish control over the relation order–disorder on particle motion and their collision effects by Brownian motion phenomena in the frame of fractal nature matter. We performed some experiments and got interesting results based on microorganism motion initiated by different outer energetic impulses. This is practically the idea of biomimetic correlation between particles and microorganisms Worlds, what is very original and leads towards biunivocal different phenomena’s understanding. Another idea is to establish some controlling effects for electro ceramic particle motion in chemical-materials sciences consolidation by some phenomena in the nature. These important research directions open new frontiers with very specific reflections for future of microelectronics materials. 
    more » « less
  4. The world energy crisis necessitated the cause of the research interest into new, renewable and alternative energy sources. From this point of view, there is research on phenomena and different synthetic methods and on structure and electronic property optimization expressed by important material and device advancement. Efficiency and electricity generation (batteries, fuel cells, hydrogen energy) are nowadays actual questions. Because of that research, innovations and applications require extended knowledge by fractal nature characterization. The electrochemical energy sources solutions, especially electrolytes, are in fractal nature science focus. Based on the research novelties, especially electronic materials, we presented an investigation on fractal structure influence in electrochemistry. We explore the activation energy and fundamental thermodynamic functions and values, also the electrode surface changed by complex fractal correction through fractal dimension of grains and pores, and Brownian motion of involved particles, as well. At the end, the electrochemical Arrhenius and Butler–Volmer equation fractalization is applied. All of these open new perspectives for electrochemical energy processes, within electrolyte bulk and related electrodes and more precise energy generation. This is important for semiconductor processing in solar cells and devices. So, we included the knowledge of fractal sciences advancement in this field for current–voltage equation. 
    more » « less
  5. Abstract. While photooxidants are important in atmospheric condensed phases, there arevery few measurements in particulate matter (PM). Here we measure lightabsorption and the concentrations of three photooxidants – hydroxyl radical(⚫OH), singlet molecular oxygen (1O2*),and oxidizing triplet excited states of organic matter (3C*) –in illuminated aqueous extracts of wintertime particles from Davis,California. 1O2* and 3C*, which are formedfrom photoexcitation of brown carbon (BrC), have not been previously measuredin PM. In the extracts, mass absorption coefficients for dissolved organiccompounds (MACDOC) at 300 nm range between 13 000 and30 000 cm2 (g C)−1 are approximately twice ashigh as previous values in Davis fogs. The average (±1σ)⚫OH steady-state concentration in particle extracts is4.4(±2.3)×10-16 M, which is very similar to previous valuesin fog, cloud, and rain: although our particle extracts are moreconcentrated, the resulting enhancement in the rate of ⚫OHphotoproduction is essentially canceled out by a corresponding enhancement inconcentrations of natural sinks for ⚫OH. In contrast,concentrations of the two oxidants formed primarily from brown carbon (i.e.,1O2* and 3C*) are both enhanced in theparticle extracts compared to Davis fogs, a result of higher concentrationsof dissolved organic carbon and faster rates of light absorption in theextracts. The average 1O2* concentration in the PM extractsis 1.6(±0.5)×10-12 M, 7 times higher than past fogmeasurements, while the average concentration of oxidizing triplets is 1.0(±0.4)×10-13 M, nearly double the average Davis fog value.Additionally, the rates of 1O2* and 3C*photoproduction are both well correlated with the rate of sunlightabsorption. Since we cannot experimentally measure photooxidants under ambient particlewater conditions, we measured the effect of PM dilution on oxidantconcentrations and then extrapolated to ambient particle conditions. As theparticle mass concentration in the extracts increases, measuredconcentrations of ⚫OH remain relatively unchanged,1O2* increases linearly, and 3C* concentrations increase lessthan linearly, likely due to quenching by dissolved organics. Based on ourmeasurements, and accounting for additional sources and sinks that should beimportant under PM conditions, we estimate that [⚫OH] inparticles is somewhat lower than in dilute cloud/fog drops, while [3C*]is 30 to 2000 times higher in PM than in drops, and [1O2*] isenhanced by a factor of roughly 2400 in PM compared to drops. Because ofthese enhancements in 1O2* and 3C* concentrations,the lifetimes of some highly soluble organics appear to be much shorter inparticle liquid water than under foggy/cloudy conditions. Based onextrapolating our measured rates of formation in PM extracts, BrC-derivedsinglet molecular oxygen and triplet excited states are overall the dominantsinks for organic compounds in particle liquid water, with an aggregate rateof reaction for each oxidant that is approximately 200–300 times higherthan the aggregate rate of reactions for organics with ⚫OH. Forindividual, highly soluble reactive organic compounds it appears that1O2* is often the major sink in particle water, which is a newfinding. Triplet excited states are likely also important in the fate ofindividual particulate organics, but assessing this requires additionalmeasurements of triplet interactions with dissolved organic carbon innatural samples. 
    more » « less