skip to main content


Title: An inhomogeneous Dirichlet theorem via shrinking targets
We give an integrability criterion on a real-valued non-increasing function $\unicode[STIX]{x1D713}$ guaranteeing that for almost all (or almost no) pairs $(A,\mathbf{b})$ , where $A$ is a real $m\times n$ matrix and $\mathbf{b}\in \mathbb{R}^{m}$ , the system $$\begin{eqnarray}\Vert A\mathbf{q}+\mathbf{b}-\mathbf{p}\Vert ^{m}<\unicode[STIX]{x1D713}(T),\quad \Vert \mathbf{q}\Vert ^{n} more » « less
Award ID(s):
1900560
NSF-PAR ID:
10177400
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Compositio Mathematica
Volume:
155
Issue:
7
ISSN:
0010-437X
Page Range / eLocation ID:
1402 to 1423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For each $t\in \mathbb{R}$ , we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $\unicode[STIX]{x1D6F7}$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $\unicode[STIX]{x1D6EC}$ (the de Bruijn–Newman constant ) such that the zeros of $H_{t}$ are all real precisely when $t\geqslant \unicode[STIX]{x1D6EC}$ . The Riemann hypothesis is equivalent to the assertion $\unicode[STIX]{x1D6EC}\leqslant 0$ , and Newman conjectured the complementary bound $\unicode[STIX]{x1D6EC}\geqslant 0$ . In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $\unicode[STIX]{x1D6EC}<0$ and then analyzing the dynamics of zeros of $H_{t}$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $H_{t}$ in the range $\unicode[STIX]{x1D6EC} more » « less
  2. Let $f\in C^{2}(\mathbb{T}^{2})$ have mean value 0 and consider $$\begin{eqnarray}\sup _{\unicode[STIX]{x1D6FE}\,\text{closed geodesic}}\frac{1}{|\unicode[STIX]{x1D6FE}|}\biggl|\int _{\unicode[STIX]{x1D6FE}}f\,d{\mathcal{H}}^{1}\biggr|,\end{eqnarray}$$ where $\unicode[STIX]{x1D6FE}$ ranges over all closed geodesics $\unicode[STIX]{x1D6FE}:\mathbb{S}^{1}\rightarrow \mathbb{T}^{2}$ and $|\unicode[STIX]{x1D6FE}|$ denotes its length. We prove that this supremum is always attained. Moreover, we can bound the length of the geodesic $\unicode[STIX]{x1D6FE}$ attaining the supremum in terms of the smoothness of the function: for all $s\geq 2$ , $$\begin{eqnarray}|\unicode[STIX]{x1D6FE}|^{s}{\lesssim}_{s}\biggl(\max _{|\unicode[STIX]{x1D6FC}|=s}\Vert \unicode[STIX]{x2202}_{\unicode[STIX]{x1D6FC}}f\Vert _{L^{1}(\mathbb{T}^{2})}\biggr)\Vert \unicode[STIX]{x1D6FB}f\Vert _{L^{2}}\Vert f\Vert _{L^{2}}^{-2}.\end{eqnarray}$$ 
    more » « less
  3. In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence ${\mathcal{D}}$ , we obtain a sharp criterion such that for almost every $\unicode[STIX]{x1D6FC}$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $(n,p)\in \mathbb{N}\times \mathbb{Z}$ for a certain one-parameter family of $\unicode[STIX]{x1D713}$ . Also, under a minor condition on pseudo-absolute-value sequences ${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$ , we obtain a sharp criterion on a general sequence $\unicode[STIX]{x1D713}(n)$ such that for almost every $\unicode[STIX]{x1D6FC}$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}_{1}}|n|_{{\mathcal{D}}_{2}}\cdots |n|_{{\mathcal{D}}_{k}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $(n,p)\in \mathbb{N}\times \mathbb{Z}$ . 
    more » « less
  4. Let $\unicode[STIX]{x1D6FC}\in \mathbb{R}\backslash \mathbb{Q}$ and $\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})=\limsup _{n\rightarrow \infty }(\ln q_{n+1})/q_{n}<\infty$ , where $p_{n}/q_{n}$ is the continued fraction approximation to $\unicode[STIX]{x1D6FC}$ . Let $(H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}u)(n)=u(n+1)+u(n-1)+2\unicode[STIX]{x1D706}\cos 2\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D703}+n\unicode[STIX]{x1D6FC})u(n)$ be the almost Mathieu operator on $\ell ^{2}(\mathbb{Z})$ , where $\unicode[STIX]{x1D706},\unicode[STIX]{x1D703}\in \mathbb{R}$ . Avila and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170 (1) (2009), 303–342] conjectured that, for $2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$ , $H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$ satisfies Anderson localization if $|\unicode[STIX]{x1D706}|>e^{2\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$ . In this paper, we develop a method to treat simultaneous frequency and phase resonances and obtain that, for $2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$ , $H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$ satisfies Anderson localization if $|\unicode[STIX]{x1D706}|>e^{3\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$ . 
    more » « less
  5. We examine correlations of the Möbius function over $\mathbb{F}_{q}[t]$ with linear or quadratic phases, that is, averages of the form 1 $$\begin{eqnarray}\frac{1}{q^{n}}\mathop{\sum }_{\deg f0$ if $Q$ is linear and $O(q^{-n^{c}})$ for some absolute constant $c>0$ if $Q$ is quadratic. The latter bound may be reduced to $O(q^{-c^{\prime }n})$ for some $c^{\prime }>0$ when $Q(f)$ is a linear form in the coefficients of $f^{2}$ , that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive-combinatorial Bogolyubov theorem. 
    more » « less