skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz
Award ID(s):
1711395 1731290
NSF-PAR ID:
10177540
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Antennas and Propagation
Volume:
68
Issue:
2
ISSN:
0018-926X
Page Range / eLocation ID:
900 to 912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It has been well established that the internal length scale related to the cell size plays a critical role in the response of architected structures. It this paper, a Volterra derivative-based approach for deriving nonlocal continuum laws directly from an energy expression without involving spatial derivatives of the displacement is proposed. A major aspect of the work is the introduction of a nonlocal derivative-free directionality term, which recovers the classical deformation gradient in the infinitesimal limit. The proposed directionality term avoids issues with correspondences under nonsymmetric conditions (such a unequal distribution of points that cause trouble with conventional correspondence-based approaches in peridynamics). Using this approach, we derive a nonlocal version of a shear deformable beam model in the form of integro-differential equations. As an application, buckling analysis of architected beams with different core shapes is performed. In this context, we also provide a physical basis for the consideration of energy for nonaffine (local bending) deformation. This removes the need for additional energy in an ad hoc manner towards suppressing zero-energy modes. The numerical results demonstrate that the proposed framework can accurately estimate the critical buckling load for a beam in comparison to 3-D simulations at a small fraction of the cost and computational time. Efficacy of the framework is demonstrated by analysing the responses of a deformable beam under different loads and boundary conditions. 
    more » « less
  2. null (Ed.)
  3. Developing alternative paradigms of electronics beyond silicon technology requires the exploration of fundamentally new physical mechanisms, such as the valley-specific phenomena in hexagonal two-dimensional materials. We realize ballistic valley Hall kink states in bilayer graphene and demonstrate gate-controlled current transmission in a four-kink router device. The operations of a waveguide, a valve, and a tunable electron beam splitter are demonstrated. The valley valve exploits the valley-momentum locking of the kink states and reaches an on/off ratio of 8 at zero magnetic field. A magnetic field enables a full-range tunable coherent beam splitter. These results pave a path to building a scalable, coherent quantum transportation network based on the kink states.

     
    more » « less