skip to main content


Search for: All records

Award ID contains: 1731290

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Millimeter-wave (mmWave) and Terahertz (THz) will be used in the sixth-generation (6G) wireless systems, especially for indoor scenarios. This paper presents an indoor three-dimensional (3-D) statistical channel model for mmWave and sub-THz frequencies, which is developed from extensive channel propagation measurements conducted in an office building at 28 GHz and 140 GHz in 2014 and 2019. Over 15,000 power delay profiles (PDPs) were recorded to study channel statistics such as the number of time clusters, cluster delays, and cluster powers. All the parameters required in the channel generation procedure are derived from empirical measurement data for 28 GHz and 140 GHz line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The channel model is validated by showing that the simulated root mean square (RMS) delay spread and RMS angular spread yield good agreements with measured values. An indoor channel simulation software is built upon the popular NYUSIM outdoor channel simulator, which can generate realistic channel impulse response, PDP, and power angular spectrum. 
    more » « less
  2. null (Ed.)
    3GPP air interface standards support meter-level position location of a user in a cellular network. With wider bandwidths and narrow antenna beamwidths available at mmWave frequencies, cellular networks now have the potential to provide sub-meter position location for each user. In this work, we provide an overview of 3GPP position location techniques that are designed for line-of-sight propagation. We discuss additional measurements required in the 3GPP standard that enable multipath-based non-line-of-sight position location. Further, we validate the concepts in this paper by using field data to test a map-based position location algorithm in an indoor office environment which has dimensions of 35 m by 65.5 m. We demonstrate how the fusion of angle of arrival and time of flight information in concert with a 3-D map of the office provides a mean accuracy of 5.72 cm at 28 GHz and 6.29 cm at 140 GHz, over 23 receiver distances ranging from 4.2 m to 32.3 m, using a single base station in line-of-sight and non-line-of-sight. We also conduct a theoretical analysis of the typical error experienced in the map-based position location algorithm and show that the complexity of the map-based algorithm is low enough to allow real-time implementation. 
    more » « less
  3. null (Ed.)
    Abstract—Accurate channel modeling and simulation are indispensable for millimeter-wave wideband communication systems that employ electrically-steerable and narrow beam antenna arrays. Three important channel modeling components, spatial consistency, human blockage, and outdoor-to-indoor penetration loss, were proposed in the 3rd Generation Partnership Project Release 14 for mmWave communication system design. This paper presents NYUSIM 2.0, an improved channel simulator which can simulate spatially consistent channel realizations based on the existing drop-based channel simulator NYUSIM 1.6.1. A geometry-based approach using multiple reflection surfaces is proposed to generate spatially correlated and time-variant channel coefficients. Using results from 73 GHz pedestrian measurements for human blockage, a four-state Markov model has been implemented in NYUSIM to simulate dynamic human blockage shadowing loss. To model the excess path loss due to penetration into buildings, a parabolic model for outdoorto- indoor penetration loss has been adopted from the 5G Channel Modeling special interest group and implemented in NYUSIM 2.0. This paper demonstrates how these new modeling capabilities reproduce realistic data when implemented in Monte Carlo fashion using NYUSIM 2.0, making it a valuable measurement-based channel simulator for fifth-generation and beyond mmWave communication system design and evaluation. Index Terms—5G; mmWave; NYUSIM; channel modeling; channel simulator; spatial consistency; human blockage; outdoor-to-indoor loss; building penetration 
    more » « less
  4. null (Ed.)
    Accurate precise positioning at millimeter wave frequencies is possible due to the large available bandwidth that permits precise on-the-fly time of flight measurements using conventional air interface standards. In addition, narrow antenna beamwidths may be used to determine the angles of arrival and departure of the multipath components between the base station and mobile users. By combining accurate temporal and angular information of multipath components with a 3- D map of the environment (that may be built by each user or downloaded a-priori), robust localization is possible, even in non-line-of-sight environments. In this work, we develop an accurate 3-D ray tracer for an indoor office environment and demonstrate how the fusion of angle of departure and time of flight information in concert with a 3-D map of a typical large office environment provides a mean accuracy of 12.6 cm in line-of-sight and 16.3 cm in non-line-of-sight, over 100 receiver distances ranging from 1.5 m to 24.5 m using a single base station. We show how increasing the number of base stations improves the average non-line-of-sight position location accuracy to 5.5 cm at 21 locations with a maximum propagation distance of 24.5 m. Index Terms—localization; positioning; position location; navigation; mmWave; 5G; ray tracing; site-specific propagation; map-based 
    more » « less
  5. null (Ed.)
    This paper discusses early results associated with a fully-digital direct-conversion array receiver at 28 GHz. The proposed receiver makes use of commercial off-the-shelf (COTS) electronics, including the receiver chain. The design consists of a custom 28 GHz patch antenna sub-array providing gain in the elevation plane, with azimuthal plane beamforming provided by real-time digital signal processing (DSP) algorithms running on a Xilinx Radio Frequency System on Chip (RF SoC). The proposed array receiver employs element-wise fully-digital array processing that supports ADC sample rates up to 2 GS/second and up to 1 GHz of operating bandwidth per antenna. The RF mixed-signal data conversion circuits and DSP algorithms operate on a single-chip RFSoC solution installed on the Xilinx ZCU1275 prototyping platform. 
    more » « less
  6. null (Ed.)
    This paper provides an analysis of radio wave scattering for frequencies ranging from the microwave to the Terahertz band (e.g., 1 GHz - 1 THz), by studying the scattering power reradiated from various types of materials with different surface roughnesses. First, fundamentals of scattering and reflection are developed and explained for use in wireless mobile radio, and the effect of scattering on the reflection coefficient for rough surfaces is investigated. Received power is derived using two popular scattering models - the directive scattering (DS) model and the radar cross section (RCS) model through simulations over a wide range of frequencies, materials, and orientations for the two models, and measurements confirm the accuracy of the DS model at 140 GHz. This paper shows that scattering can become a prominent propagation mechanism as frequencies extend to millimeter-wave (mmWave) and beyond, but at other times can be treated like simple reflection. Knowledge of scattering effects is critical for appropriate and realistic channel models, which further support the development of massive multiple input-multiple output (MIMO) techniques, localization, ray tracing tool design, and imaging for future 5G and 6G wireless systems. 
    more » « less
  7. null (Ed.)
    This paper provides indoor reflection, scattering, transmission, and large-scale path loss measurements and models, which describe the main propagation mechanisms at millimeter wave and Terahertz frequencies. Channel properties for common building materials (drywall and clear glass) are carefully studied at 28, 73, and 140 GHz using a wideband sliding correlation based channel sounder system with rotatable narrow-beam horn antennas. Reflection coefficient is shown to linearly increase as the incident angle increases, and lower reflection loss (e.g., stronger reflections) are observed as frequencies increase for a given incident angle. Although backscatter from drywall is present at 28, 73, and 140 GHz, smooth surfaces (like drywall) are shown to be modeled as a simple reflected surface, since the scattered power is 20 dB or more below the reflected power over the measured range of frequency and angles. Partition loss tends to increase with frequency, but the amount of loss is material dependent. Both clear glass and drywall are shown to induce a depolarizing effect, which becomes more prominent as frequency increases. Indoor propagation measurements and large-scale indoor path loss models at 140 GHz are provided, revealing similar path loss exponent and shadow fading as observed at 28 and 73 GHz. The measurements and models in this paper can be used for future wireless system design and other applications within buildings for frequencies above 100 GHz 
    more » « less