skip to main content


Title: Determining flow directions in river channel networks using planform morphology and topology
Abstract. The abundance of global, remotely sensed surface water observations has accelerated efforts toward characterizing and modeling how water moves across the Earth's surface through complex channel networks. In particular, deltas and braided river channel networks may contain thousands of links that route water, sediment, and nutrients across landscapes. In order to model flows through channel networks and characterize network structure, the direction of flow for each link within the network must be known. In this work, we propose a rapid, automatic, and objective method to identify flow directions for all links of a channel network using only remotely sensed imagery and knowledge of the network's inlet and outletlocations. We designed a suite of direction-predicting algorithms (DPAs),each of which exploits a particular morphologic characteristic of thechannel network to provide a prediction of a link's flow direction. DPAswere chained together to create “recipes”, or algorithms that set all theflow directions of a channel network. Separate recipes were built for deltasand braided rivers and applied to seven delta and two braided river channelnetworks. Across all nine channel networks, the recipe-predicted flowdirections agreed with expert judgement for 97 % of all tested links, andmost disagreements were attributed to unusual channel network topologiesthat can easily be accounted for by pre-seeding critical links with knownflow directions. Our results highlight the (non)universality ofprocess–form relationships across deltas and braided rivers.  more » « less
Award ID(s):
1811909
NSF-PAR ID:
10177666
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
8
Issue:
1
ISSN:
2196-632X
Page Range / eLocation ID:
87 to 102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. River deltas are complex, dynamic systems whose channel networks evolve in response to internal and external forcings. To capture these changes, methods to extract and analyze deltaic morphodynamics automatically using available remotely sensed imagery and experimental observations are needed. Here, we apply a promising method for the automatic extraction of channel presence called RivaMap, on both synthetic and experimental data sets, to investigate the changes experienced by the system in response to five changes in forcings. RivaMap is an automated method to extract nonbinarized channel locations from imagery based on a singularity index that combines the multiscale first and second derivatives of the image intensity to favor the identification of curvilinear features and suppress edges. We quantify how the channelization varies by computing the channelized response variance (CRV), which we define as the variance of each pixel's singularity index response through time. We find that increasing magnitudes of sediment inflow (Qs) and water inflow (Qw) result in corresponding increases in the maximum CRV. We find that increasing the ratio ofQstoQwresults in increased number of channelized areas. We see that adding cohesion to the exposed sediment surface of the experimental delta results in decreased magnitude and decreased number of channelized areas in the CRV. Finally, by observing changes to the CRV over time, we are able to quantify the timescale of internal channel reorganization events as the experimental delta evolves under constant forcings.

     
    more » « less
  2. Abstract

    Channel bifurcations control the distribution of water and sediment in deltas, and the routing of these materials facilitates land building in coastal regions. Yet few practical methods exist to provide accurate predictions of flow partitioning at multiple bifurcations within a distributary channel network. Herein, multiple nodal relations that predict flow partitioning at individual bifurcations, utilizing various hydraulic and channel planform parameters, are tested against field data collected from the Selenga River delta, Russia. The data set includes 2.5 months of time‐continuous, synoptic measurements of water and sediment discharge partitioning covering a flood hydrograph. Results show that width, sinuosity, and bifurcation angle are the best remotely sensed, while cross‐sectional area and flow depth are the best field measured nodal relation variables to predict flow partitioning. These nodal relations are incorporated into a graph model, thus developing a generalized framework that predicts partitioning of water discharge and total, suspended, and bedload sediment discharge in deltas. Results from the model tested well against field data produced for the Wax Lake, Selenga, and Lena River deltas. When solely using remotely sensed variables, the generalized framework is especially suitable for modeling applications in large‐scale delta systems, where data and field accessibility are limited.

     
    more » « less
  3. Abstract

    Groundwater is the primary source of water in the Bengal Delta but contamination threatens this vital resource. In deltaic environments, heterogeneous sedimentary architecture controls groundwater flow; therefore, characterizing subsurface structure is a critical step in predicting groundwater contamination. Here, we show that surface information can improve the characterization of the nature and geometry of subsurface features, thus improving the predictions of groundwater flow. We selected three locations in the Bengal Delta with distinct surface river network characteristics—the lower delta with straighter tidal channels, the mid‐delta with meandering and braided channels, and the inactive delta with transitional sinuous channels. We used surface information, including channel widths, depths, and sinuosity, to create models of the subsurface with object‐based geostatistical simulations. We collected an extensive set of lithologic data and filled in gaps with newly drilled boreholes. Our results show that densely distributed lithologic data from active lower and mid‐delta are consistent with the object‐based models generated from surface information. In the inactive delta, metrics from object‐based models derived from surface geometries are not consistent with subsurface data. We further simulated groundwater flow and solute transport through the object‐based models and compared these with simulated flow through lithologic models based only on variograms. Substantial differences in flow and transport through the different geologic models show that geometric structure derived from surface information strongly influences groundwater flow and solute transport. Land surface features in active deltas are therefore a valuable source of information for improving the evaluation of groundwater vulnerability to contamination.

     
    more » « less
  4. Abstract

    Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow‐weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in‐network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous‐like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo‐oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.

     
    more » « less
  5. null (Ed.)
    Abstract. The morphology of deltas is determined by the spatial extent and variability of the geomorphic processes that shape them. While in some cases resilient, deltas are increasingly threatened by natural and anthropogenic forces, such as sea level rise and land use change, which can drastically alter the rates and patterns of sediment transport. Quantifying process patterns can improve our predictive understanding of how different zones within delta systems will respond to future change. Available remotely sensed imagery can help, but appropriate tools are needed for pattern extraction and analysis. We present a method for extracting information about the nature and spatial extent of active geomorphic processes across deltas with 10 parameters quantifying the geometry of each of 1239 islands and the channels around them using machine learning. The method consists of a two-step unsupervised machine learning algorithm that clusters islands into spatially continuous zones based on the 10 morphological metrics extracted from remotely sensed imagery. By applying this method to the Ganges–Brahmaputra–Meghna Delta, we find that the system can be divided into six major zones. Classification results show that active fluvial island construction and bar migration processes are limited to relatively narrow zones along the main Ganges River and Brahmaputra and Meghna corridors, whereas zones in the mature upper delta plain with smaller fluvial distributary channels stand out as their own morphometric class. The classification also shows good correspondence with known gradients in the influence of tidal energy with distinct classes for islands in the backwater zone and in the purely tidally controlled region of the delta. Islands at the delta front under the mixed influence of tides, fluvial–estuarine construction, and local wave reworking have their own characteristic shape and channel configuration. The method is not able to distinguish between islands with embankments (polders) and natural islands in the nearby mangrove forest (Sundarbans), suggesting that human modifications have not yet altered the gross geometry of the islands beyond their previous “natural” morphology or that the input data (time, resolution) used in this study are preventing the identification of a human signature. These results demonstrate that machine learning and remotely sensed imagery are useful tools for identifying the spatial patterns of geomorphic processes across delta systems. 
    more » « less