- Award ID(s):
- 1811909
- Publication Date:
- NSF-PAR ID:
- 10177666
- Journal Name:
- Earth Surface Dynamics
- Volume:
- 8
- Issue:
- 1
- Page Range or eLocation-ID:
- 87 to 102
- ISSN:
- 2196-632X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. The morphology of deltas is determined by the spatial extent and variability of the geomorphic processes that shape them. While in some cases resilient, deltas are increasingly threatened by natural and anthropogenic forces, such as sea level rise and land use change, which can drastically alter the rates and patterns of sediment transport. Quantifying process patterns can improve our predictive understanding of how different zones within delta systems will respond to future change. Available remotely sensed imagery can help, but appropriate tools are needed for pattern extraction and analysis. We present a method for extracting information about the nature and spatial extent of active geomorphic processes across deltas with 10 parameters quantifying the geometry of each of 1239 islands and the channels around them using machine learning. The method consists of a two-step unsupervised machine learning algorithm that clusters islands into spatially continuous zones based on the 10 morphological metrics extracted from remotely sensed imagery. By applying this method to the Ganges–Brahmaputra–Meghna Delta, we find that the system can be divided into six major zones. Classification results show that active fluvial island construction and bar migration processes are limited to relatively narrow zones along the main Ganges River and Brahmaputra and Meghnamore »
-
The morphology of deltas is determined by the spatial extent and variability of the geomorphic processes that shape them. While in some cases resilient, deltas are increasingly threatened by natural and anthropogenic forces, such as sea level rise and land use change, which can drastically alter the rates and patterns of sediment transport. Quantifying process patterns can improve our predictive understanding of how different zones within delta systems will respond to future change. Available remotely sensed imagery can help but appropriate tools are needed for pattern extraction and analysis. We present a method for extracting information about the nature and spatial extent of active geomorphic processes across deltas from ten parameters quantifying the geometry of each of 1239 islands and the channels around them using machine learning. The method consists of a two-step unsupervised machine learning algorithm that clusters islands into spatially continuous zones based on the ten morphological metrics extracted from remotely sensed imagery. By applying this method to the Ganges–Brahmaputra–Meghna Delta, we find that the system can be divided into six major zones. Classification results show that active fluvial island construction and bar migration processes are limited to relatively narrow zones along the main Ganges River and Brahmaputramore »
-
River deltas are dynamic systems whose channels can widen, narrow, migrate, avulse, and bifurcate to form new channel networks through time. With hundreds of millions of people living on these globally ubiquitous systems, it is critically important to understand and predict how delta channel networks will evolve over time. Although much work has been done to understand drivers of channel migration on the individual channel scale, a global-scale analysis of the current state of delta morphological change has not been attempted. In this study, we present a methodology for the automatic extraction of channel migration vectors from remotely sensed imagery by combining deep learning and principles from particle image velocimetry (PIV). This methodology is implemented on 48 river delta systems to create a global dataset of decadal-scale delta channel migration. By comparing delta channel migration distributions with a variety of known external forcings, we find that global patterns of channel migration can largely be reconciled with the level of fluvial forcing acting on the delta, sediment flux magnitude, and frequency of flood events. An understanding of modern rates and patterns of channel migration in river deltas is critical for successfully predicting future changes to delta systems and for informing decisionmore »
-
Abstract Channel planform patterns arise from internal dynamics of sediment transport and fluid flow in rivers and are affected by external controls such as valley confinement. Understanding whether these channel patterns are preserved in the rock record has critical implications for our ability to constrain past environmental conditions. Rivers are preserved as channel belts, which are one of the most ubiquitous and accessible parts of the sedimentary record, yet the relationship between river and channel-belt planform patterns remains unquantified. We analyzed planform patterns of rivers and channel belts from 30 systems globally. Channel patterns were classified using a graph theory-based metric, the Entropic Braided Index (eBI), which quantifies the number of river channels by considering the partitioning of water and sediment discharge. We find that, after normalizing by river size, channel-belt width and wavelength, amplitude, and curvature of the belt edges decrease with increasing river channel number (eBI). Active flow in single-channel rivers occupies as little as 1% of the channel belt, while in multichannel rivers it can occupy >50% of the channel belt. Moreover, we find that channel patterns lie along a continuum of channel numbers. Our findings have implications for studies on river and floodplain interaction, storage timescalesmore »
-
Introduction: Vaso-occlusive crises (VOCs) are a leading cause of morbidity and early mortality in individuals with sickle cell disease (SCD). These crises are triggered by sickle red blood cell (sRBC) aggregation in blood vessels and are influenced by factors such as enhanced sRBC and white blood cell (WBC) adhesion to inflamed endothelium. Advances in microfluidic biomarker assays (i.e., SCD Biochip systems) have led to clinical studies of blood cell adhesion onto endothelial proteins, including, fibronectin, laminin, P-selectin, ICAM-1, functionalized in microchannels. These microfluidic assays allow mimicking the physiological aspects of human microvasculature and help characterize biomechanical properties of adhered sRBCs under flow. However, analysis of the microfluidic biomarker assay data has so far relied on manual cell counting and exhaustive visual morphological characterization of cells by trained personnel. Integrating deep learning algorithms with microscopic imaging of adhesion protein functionalized microfluidic channels can accelerate and standardize accurate classification of blood cells in microfluidic biomarker assays. Here we present a deep learning approach into a general-purpose analytical tool covering a wide range of conditions: channels functionalized with different proteins (laminin or P-selectin), with varying degrees of adhesion by both sRBCs and WBCs, and in both normoxic and hypoxic environments. Methods: Our neuralmore »