skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient and Guaranteed Planar Pose Graph optimization Using the Complex Number Representation
In this paper, we present CPL-Sync, a certifiably correct algorithm to solve planar pose graph optimization (PGO) using the complex number representation. We formulate planar PGO as the maximum likelihood estimation (MLE) on the product of unit complex numbers, and relax this nonconvex quadratic complex optimization problem to complex semidefinite programming (SDP). Furthermore, we simplify the corresponding semidefinite programming to Riemannian staircase optimization (RSO) on complex oblique manifolds that can be solved with the Riemannian trust region (RTR) method. In addition, we prove that the SDP relaxation and RSO simplification are tight as long as the noise magnitude is below a certain threshold. The efficacy of this work is validated through comparisons with existing methods as well as applications on planar PGO in simultaneous localization and mapping (SLAM), which indicates that the proposed algorithm is more efficient and capable of solving planar PGO certifiably. The C++ code for CPL-Sync is available at https://github. com/fantaosha/CPL- Sync.  more » « less
Award ID(s):
1662233
PAR ID:
10178619
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
1904 to 1911
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The traveling salesman problem (TSP) is a fundamental problem in combinatorial optimization. Several semidefinite programming relaxations have been proposed recently that exploit a variety of mathematical structures including, for example, algebraic connectivity, permutation matrices, and association schemes. The main results of this paper are twofold. First, de Klerk and Sotirov [de Klerk E, Sotirov R (2012) Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry. Math. Programming 133(1):75–91.] present a semidefinite program (SDP) based on permutation matrices and symmetry reduction; they show that it is incomparable to the subtour elimination linear program but generally dominates it on small instances. We provide a family of simplicial TSP instances that shows that the integrality gap of this SDP is unbounded. Second, we show that these simplicial TSP instances imply the unbounded integrality gap of every SDP relaxation of the TSP mentioned in the survey on SDP relaxations of the TSP in section 2 of Sotirov [Sotirov R (2012) SDP relaxations for some combinatorial optimization problems. Anjos MF, Lasserre JB, eds., Handbook on Semidefinite, Conic and Polynomial Optimization (Springer, New York), 795–819.]. In contrast, the subtour linear program performs perfectly on simplicial instances. The simplicial instances thus form a natural litmus test for future SDP relaxations of the TSP. 
    more » « less
  2. Quantum computation shows promise for addressing numerous classically intractable problems, such as optimization tasks. Many optimization problems are NP-hard, meaning that they scale exponentially with problem size and thus cannot be addressed at scale by traditional computing paradigms. The recently proposed quantum algorithm arXiv:2206.14999 addresses this challenge for some NP-hard problems, and is based on classical semidefinite programming (SDP). In this manuscript, we generalize the SDP-inspired quantum algorithm to sum-of-squares programming, which targets a broader problem set. Our proposed algorithm addresses degree- polynomial optimization problems with variables (which are representative of many NP-hard problems) using qubits, quantum measurements, and classical calculations. We apply the proposed algorithm to the prototypical Max-SAT problem and compare its performance against classical sum-of-squares, state-of-the-art heuristic solvers, and random guessing. Simulations show that the performance of our algorithm surpasses that of classical sum-of-squares after rounding. Our results further demonstrate that our algorithm is suitable for large problems and approximates the best known classical heuristics, while also providing a more generalizable approach compared to problem-specific heuristics. 
    more » « less
  3. K-means clustering is a widely used machine learning method for identifying patterns in large datasets. Recently, semidefinite programming (SDP) relaxations have been proposed for solving the K-means optimization problem, which enjoy strong statistical optimality guarantees. However, the prohibitive cost of implementing an SDP solver renders these guarantees inaccessible to practical datasets. In contrast, nonnegative matrix factorization (NMF) is a simple clustering algorithm widely used by machine learning practitioners, but it lacks a solid statistical underpinning and theoretical guarantees. In this paper, we consider an NMF-like algorithm that solves a nonnegative low-rank restriction of the SDP-relaxed K-means formulation using a nonconvex Burer--Monteiro factorization approach. The resulting algorithm is as simple and scalable as state-of-the-art NMF algorithms while also enjoying the same strong statistical optimality guarantees as the SDP. In our experiments, we observe that our algorithm achieves significantly smaller mis-clustering errors compared to the existing state-of-the-art while maintaining scalability. 
    more » « less
  4. Semidefinite programming (SDP) is a powerful tool for tackling a wide range of computationally hard problems such as clustering. Despite the high accuracy, semidefinite programs are often too slow in practice with poor scalability on large (or even moderate) datasets. In this paper, we introduce a linear time complexity algorithm for approximating an SDP relaxed K-means clustering. The proposed sketch-and-lift (SL) approach solves an SDP on a subsampled dataset and then propagates the solution to all data points by a nearest-centroid rounding procedure. It is shown that the SL approach enjoys a similar exact recovery threshold as the K-means SDP on the full dataset, which is known to be information-theoretically tight under the Gaussian mixture model. The SL method can be made adaptive with enhanced theoretic properties when the cluster sizes are unbalanced. Our simulation experiments demonstrate that the statistical accuracy of the proposed method outperforms state-of-the-art fast clustering algorithms without sacrificing too much computational efficiency, and is comparable to the original K-means SDP with substantially reduced runtime. 
    more » « less
  5. Schulz, Christian; Ucar, Bora (Ed.)
    We experimentally evaluate the performance of several Max Cut approximation algorithms. In particular, we compare the results of the Goemans and Williamson algorithm using semidefinite programming with Trevisan’s algorithm using spectral partitioning. The former algorithm has a known .878 approximation guarantee whereas the latter has a .614 approximation guarantee. We investigate whether this gap in approximation guarantees is evident in practice or whether the spectral algorithm performs as well as the SDP. We also compare the performances to the standard greedy Max Cut algorithm which has a .5 approximation guarantee and two additional spectral algorithms. The algorithms are tested on Erdős-Renyi random graphs, complete graphs from TSPLIB, and real-world graphs from the Network Repository. We find, unsurprisingly, that the spectral algorithms provide a significant speed advantage over the SDP. In our experiments, the spectral algorithms return cuts with values which are competitive with those of the SDP. 
    more » « less