skip to main content


Title: An Experimental Evaluation of Semidefinite Programming and Spectral Algorithms for Max Cut
We experimentally evaluate the performance of several Max Cut approximation algorithms. In particular, we compare the results of the Goemans and Williamson algorithm using semidefinite programming with Trevisan’s algorithm using spectral partitioning. The former algorithm has a known .878 approximation guarantee whereas the latter has a .614 approximation guarantee. We investigate whether this gap in approximation guarantees is evident in practice or whether the spectral algorithm performs as well as the SDP. We also compare the performances to the standard greedy Max Cut algorithm which has a .5 approximation guarantee and two additional spectral algorithms. The algorithms are tested on Erdős-Renyi random graphs, complete graphs from TSPLIB, and real-world graphs from the Network Repository. We find, unsurprisingly, that the spectral algorithms provide a significant speed advantage over the SDP. In our experiments, the spectral algorithms return cuts with values which are competitive with those of the SDP.  more » « less
Award ID(s):
2007009
NSF-PAR ID:
10340106
Author(s) / Creator(s):
;
Editor(s):
Schulz, Christian; Ucar, Bora
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
233
ISSN:
1868-8969
Page Range / eLocation ID:
19:1-19:14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Assuming the Unique Games Conjecture (UGC), the best approximation ratio that can be obtained in polynomial time for the MAX CUT problem is αCUT ≃ 0.87856, obtained by the celebrated SDP-based approximation algorithm of Goemans and Williamson. The currently best approximation algorithm for MAX DI-CUT, i.e., the MAX CUT problem in directed graphs, achieves a ratio of about 0.87401, leaving open the question whether MAX DI-CUT can be approximated as well as MAX CUT. We obtain a slightly improved algorithm for MAX DI-CUT and a new UGC-hardness result for it, showing that 0.87446 ≤ αDI-CUT ≤ 0.87461, where αDI-CUT is the best approximation ratio that can be obtained in polynomial time for MAX DI-CUT under UGC. The new upper bound separates MAX DI-CUT from MAX CUT, resolving a question raised by Feige and Goemans. A natural generalization of MAX DI-CUT is the MAX 2-AND problem in which each constraint is of the form z1∧z2, where z1 and z2 are literals, i.e., variables or their negations (In MAX DI-CUT each constraint is of the form \neg{x1}∧x2, where x1 and x2 are variables.) Austrin separated MAX 2-AND from MAX CUT by showing that α2AND < 0.87435 and conjectured that MAX 2-AND and MAX DI-CUT have the same approximation ratio. Our new lower bound on MAX DI-CUT refutes this conjecture, completing the separation of the three problems MAX 2-AND, MAX DI-CUT and MAX CUT. We also obtain a new lower bound for MAX 2-AND, showing that 0.87414 ≤ α2AND ≤ 0.87435. Our upper bound on MAX DI-CUT is achieved via a simple, analytical proof. The lower bounds on MAX DI-CUT and MAX 2-AND (the new approximation algorithms) use experimentally-discovered distributions of rounding functions which are then verified via computer-assisted proofs. 
    more » « less
  2. We give an $\widetilde{O}(\sqrt{n})$-space single-pass 0.483-approximation streaming algorithm for estimating the maximum directed cut size (Max-DICUT) in a directed graph on n vertices. This improves over an $O(\log n)$-space $4 / 9 < 0.45$ approximation algorithm due to Chou, Golovnev, and Velusamy (FOCS 2020), which was known to be optimal for $o(\sqrt{n})$-space algorithms. Max-DICUT is a special case of a constraint satisfaction problem (CSP). In this broader context, we give the first CSP for which algorithms with $\widetilde{O}(\sqrt{n})$- space can provably outperform $o(\sqrt{n})$- space algorithms. The key technical contribution of our work is development of the notions of a first-order snapshot of a (directed) graph and of estimates of such snapshots. These snapshots can be used to simulate certain (non-streaming) Max-DICUT algorithms, including the “oblivious” algorithms introduced by Feige and Jozeph (Algorithmica, 2015), who showed that one such algorithm Previous work of the authors (SODA 2023) studied the restricted case of bounded-degree graphs, and observed that in this setting, it is straightforward to estimate the snapshot with $\ell_{1}$ errors and this suffices to simulate oblivious algorithms. But for unbounded-degree graphs, even defining an achievable and sufficient notion of estimation is subtle. We describe a new notion of snapshot estimation and prove its sufficiency using careful smoothing techniques, and then develop an algorithm which sketches such an estimate via a delicate process of intertwined vertex- and edge-subsampling. Prior to our work, the only streaming algorithms for any CSP on general instances were based on generalizations of the $O(\log n)$-space algorithm for Max-DICUT, and can roughly be characterized as based on “zeroth” order snapshots. Our work thus opens the possibility of a new class of algorithms for approximating CSPs by demonstrating that more sophisticated snapshots can outperform cruder ones in the case of Max-DICUT. 
    more » « less
  3. Nikhil, Bansal ; Nagarajan, Viswanath (Ed.)
    We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random ordering makes a provable difference. Whereas a 4/9 ≈ 0.445 approximation of DICUT requires space with adversarial ordering, we show that with random ordering of constraints there exists a 0.483-approximation algorithm that only needs O(log n) space. We also give new algorithms for Max-DICUT in variants of the adversarial ordering setting. Specifically, we give a two-pass O(log n) space 0.483-approximation algorithm for general graphs and a single-pass space 0.483-approximation algorithm for bounded-degree graphs. On the negative side, we prove that CSPs where the satisfying assignments of the constraints support a one-wise independent distribution require -space for any non-trivial approximation, even when the constraints are randomly ordered. This was previously known only for adversarially ordered constraints. Extending the results to randomly ordered constraints requires switching the hard instances from a union of random matchings to simple Erdős-Renyi random (hyper)graphs and extending tools that can perform Fourier analysis on such instances. The only CSP to have been considered previously with random ordering is Max-CUT where the ordering is not known to change the approximability. Specifically it is known to be as hard to approximate with random ordering as with adversarial ordering, for space algorithms. Our results show a richer variety of possibilities and motivate further study of CSPs with randomly ordered constraints. 
    more » « less
  4. null (Ed.)
    We consider the classical Minimum Balanced Cut problem: given a graph $G$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $n$-vertex $m$-edge graph $G$ and any parameter $1\leq r\leq O(\log n)$, computes a $(\log m)^{r^2}$-approximation for Minimum Balanced Cut on $G$, in time $O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$. In particular, we obtain a $(\log m)^{1/\epsilon}$-approximation in time $m^{1+O(1/\sqrt{\epsilon})}$ for any constant $\epsilon$, and a $(\log m)^{f(m)}$-approximation in time $m^{1+o(1)}$, for any slowly growing function $m$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $G$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $n$-vertex graph is $n^{o(1)}$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $n$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs. 
    more » « less
  5. null (Ed.)
    We present a general framework of designing efficient dynamic approximate algorithms for optimization on undirected graphs. In particular, we develop a technique that, given any problem that admits a certain notion of vertex sparsifiers, gives data structures that maintain approximate solutions in sub-linear update and query time. We illustrate the applicability of our paradigm to the following problems. (1) A fully-dynamic algorithm that approximates all-pair maximum-flows/minimum-cuts up to a nearly logarithmic factor in $\tilde{O}(n^{2/3})$ amortized time against an oblivious adversary, and $\tilde{O}(m^{3/4})$ time against an adaptive adversary. (2) An incremental data structure that maintains $O(1)$-approximate shortest path in $n^{o(1)}$ time per operation, as well as fully dynamic approximate all-pair shortest path and transshipment in $\tilde{O}(n^{2/3+o(1)})$ amortized time per operation. (3) A fully-dynamic algorithm that approximates all-pair effective resistance up to an $(1+\eps)$ factor in $\tilde{O}(n^{2/3+o(1)} \epsilon^{-O(1)})$ amortized update time per operation. The key tool behind result (1) is the dynamic maintenance of an algorithmic construction due to Madry [FOCS' 10], which partitions a graph into a collection of simpler graph structures (known as j-trees) and approximately captures the cut-flow and metric structure of the graph. The $O(1)$-approximation guarantee of (2) is by adapting the distance oracles by [Thorup-Zwick JACM `05]. Result (3) is obtained by invoking the random-walk based spectral vertex sparsifier by [Durfee et al. STOC `19] in a hierarchical manner, while carefully keeping track of the recourse among levels in the hierarchy. 
    more » « less