The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs
- Award ID(s):
- 1714371
- PAR ID:
- 10178642
- Date Published:
- Journal Name:
- Discrete & Continuous Dynamical Systems - A
- Volume:
- 40
- Issue:
- 6
- ISSN:
- 1553-5231
- Page Range / eLocation ID:
- 3957 to 3979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Dust absorption is invoked in a number of contexts for hiding a star that has survived some sort of transient event from view. Dust formed in a transient is expanding away from the star and, in spherical models, the mass and energy budgets implied by a high optical depth at late times make such models untenable. Concentrating the dust in a disc or torus can in principle hide a source from an equatorial observer using less mass and so delay this problem. However, using axisymmetric dust radiation transfer models with a range of equatorial dust concentrations, we find that this is quite difficult to achieve in practice. The polar optical depth must be either low or high to avoid scattering optical photons to equatorial observers. Most of the emission remains at wavelengths easily observed by JWST. The equatorial brightness can be significantly suppressed for very discy configurations with little polar optical depth – but only by a factor of ∼2 for polar optical depths of τp = 1 and ∼5 for τp = 0.1 even for a very high optical depth disc (τe = 1000) viewed edge-on. It is particularly difficult to hide a source with silicate dusts because the absorption feature near 10 µm frequently leads to the emission being concentrated just bluewards of the feature, near 8 µm.more » « less
-
ABSTRACT The cold neutral medium (CNM) is an important part of the galactic gas cycle and a precondition for the formation of molecular and star-forming gas, yet its distribution is still not fully understood. In this work, we present extremely high resolution simulations of spiral galaxies with time-dependent chemistry such that we can track the formation of the CNM, its distribution within the galaxy, and its correlation with star formation. We find no strong radial dependence between the CNM fraction and total neutral atomic hydrogen (H i) due to the decreasing interstellar radiation field counterbalancing the decreasing gas column density at larger galactic radii. However, the CNM fraction does increase in spiral arms where the CNM distribution is clumpy, rather than continuous, overlapping more closely with H2. The CNM does not extend out radially as far as H i, and the vertical scale height is smaller in the outer galaxy compared to H i with no flaring. The CNM column density scales with total mid-plane pressure and disappears from the gas phase below values of PT/kB = 1000 K cm−3. We find that the star formation rate density follows a similar scaling law with CNM column density to the total gas Kennicutt–Schmidt law. In the outer galaxy, we produce realistic vertical velocity dispersions in the H i purely from galactic dynamics, but our models do not predict CNM at the extremely large radii observed in H i absorption studies of the Milky Way. We suggest that extended spiral arms might produce isolated clumps of CNM at these radii.more » « less
-
ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burning and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra.more » « less
An official website of the United States government

