skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integral Curve Clustering and Simplification for Flow Visualization: A Comparative Evaluation
Unsupervised clustering techniques have been widely applied to flow simulation data to alleviate clutter and occlusion in the resulting visualization. However, there is an absence of systematic guidelines for users to evaluate (both quantitatively and visually) the appropriate clustering technique and similarity measures for streamline and pathline curves. In this work, we provide an overview of a number of prevailing curve clustering techniques. We then perform a comprehensive experimental study to qualitatively and quantitatively compare these clustering techniques coupled with popular similarity measures used in the flow visualization literature. Based on our experimental results, we derive empirical guidelines for selecting the appropriate clustering technique and similarity measure given the requirements of the visualization task. We believe our work will inform the task of generating meaningful reduced representations for large-scale flow data and inspire the continuous investigation of a more refined guidance on clustering technique selection.  more » « less
Award ID(s):
1553329
PAR ID:
10178812
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
ISSN:
1077-2626
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effectiveness of a visualization technique is dependent on how well it supports the tasks or goals of an end-user. To measure the effectiveness of a visualization technique, researchers often use a comparative study design. In a comparative study, two or more visualization techniques are compared over a set of tasks and commonly measure human performance in terms of task accuracy and completion time. Despite the critical role of tasks in comparative studies, the current lack of guidance in existing literature on best practices for task selection and communication of research results in evaluation studies is problematic. In this work, we systematically identify and curate the task-based challenges of comparative studies by reviewing existing visualization literature on the topic. Furthermore, for each of the presented challenges we discuss the potential threats to validity for a comparative study. The challenges discussed in this paper are further backed by evidence identified in a detailed survey of comparative tree visualization studies. Finally, we recommend best practices from personal experience and the surveyed tree visualization studies to provide guidelines for other researchers to mitigate the challenges. The survey data and a free copy of the paper is available at https://osf.io/g3btk/ 
    more » « less
  2. Abstract—Visualization of medical organs and biological structures is a challenging task because of their complex geometry and the resultant occlusions. Global spherical and planar mapping techniques simplify the complex geometry and resolve the occlusions to aid in visualization. However, while resolving the occlusions these techniques do not preserve the geometric context, making them less suitable for mission-critical biomedical visualization tasks. In this paper, we present a shape-preserving local mapping technique for resolving occlusions locally while preserving the overall geometric context. More specifically, we present a novel visualization algorithm, LMap, for conformally parameterizing and deforming a selected local region-of-interest (ROI) on an arbitrary surface. The resultant shape-preserving local mappings help to visualize complex surfaces while preserving the overall geometric context. The algorithm is based on the robust and efficient extrinsic Ricci flow technique, and uses the dynamic Ricci flow algorithm to guarantee the existence of a local map for a selected ROI on an arbitrary surface. We show the effectiveness and efficacy of our method in three challenging use cases: (1) multimodal brain visualization, (2) optimal coverage of virtual colonoscopy centerline flythrough, and (3) molecular surface visualization. Index Terms—Biomedical visualization, virtual colonoscopy, multimodal brain visualization, molecular surface visualization, shape-preserving mapping 
    more » « less
  3. This work proposes to analyze the time-dependent characteristics of the physical attributes measured along pathlines derived from unsteady flows, which can be represented as a series of time activity curves (TAC). A new TAC-based unsteady flow visualization and analysis framework is proposed. The center of this framework is a new event-based distance metric (EDM) that compares the similarity of two TACs, from which a new spatio-temporal, hierarchical clustering of pathlines based on their physical attributes and an attribute-based pathline exploration are proposed. These techniques are integrated into a visual analytics system, which has been applied to a number of unsteady flow in 2D and 3D to demonstrate its utility. 
    more » « less
  4. Abstract Most existing unsteady flow visualization techniques concentrate on the depiction of geometric patterns in flow, assuming the geometry information provides sufficient representation of the underlying physical characteristics, which is not always the case. To address this challenge, this work proposes to analyse the time‐dependent characteristics of the physical attributes measured along pathlines which can be represented as a series of time activity curves (TAC). We demonstrate that the temporal trends of these TACs can convey the relation between pathlines and certain well‐known flow features (e.g. vortices and shearing layers), which enables us to select pathlines that can effectively represent the physical characteristics of interest and their temporal behaviour in the unsteady flow. Inspired by this observation, a new TAC‐based unsteady flow visualization and analysis framework is proposed. The centre of this framework is a new similarity measure that compares the similarity of two TACs, from which a new spatio‐temporal, hierarchical clustering that classifies pathlines based on their physical attributes, and a TAC‐based pathline exploration and selection strategy are proposed. A visual analytic system incorporating the TAC‐based pathline clustering and exploration is developed, which also provides new visualizations to support the user exploration of unsteady flow using TACs. This visual analytic system is applied to a number of unsteady flow in 2D and 3D to demonstrate its utility. The new system successfully reveals the detailed structure of vortices, the relation between shear layer and vortex formation, and vortex breakdown, which are difficult to convey with conventional methods. 
    more » « less
  5. Sendiña-Nadal, Irene (Ed.)
    Local graph clustering is an important machine learning task that aims to find a well-connected cluster near a set of seed nodes. Recent results have revealed that incorporating higher order information significantly enhances the results of graph clustering techniques. The majority of existing research in this area focuses on spectral graph theory-based techniques. However, an alternative perspective on local graph clustering arises from using max-flow and min-cut on the objectives, which offer distinctly different guarantees. For instance, a new method called capacity releasing diffusion (CRD) was recently proposed and shown to preserve local structure around the seeds better than spectral methods. The method was also the first local clustering technique that is not subject to the quadratic Cheeger inequality by assuming a good cluster near the seed nodes. In this paper, we propose a local hypergraph clustering technique called hypergraph CRD (HG-CRD) by extending the CRD process to cluster based on higher order patterns, encoded as hyperedges of a hypergraph. Moreover, we theoretically show that HG-CRD gives results about a quantity called motif conductance, rather than a biased version used in previous experiments. Experimental results on synthetic datasets and real world graphs show that HG-CRD enhances the clustering quality. 
    more » « less